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Outline 

•  Basic PGAS concepts  (Katherine Yelick) 
–  Execution model, memory model, resource mapping, … 
–  Standardization efforts, comparison with other paradigms 
à Exercise 1 (hello) 

•  UPC and CAF basic syntax  (Rolf Rabenseifner) 
–  Declaration of shared data / coarrays, synchronization 
–  Dynamic entities, pointers, allocation 
à Exercise 2 (triangular matrix)   

•  Advanced synchronization concepts (Reinhold Bader) 
–  Locks and split-phase barriers, atomic procedures, collective operations 
–  Parallel patterns 
à Exercises 3+4 (reduction+heat)   

•  Applications, Optimization, and Hybrid Programming (Alice Koniges, 
David Eder)  
à Exercise 5 (optimization) 

•  Appendix 

06/15/09, Author: 
Rolf Rabenseifner 
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Basic PGAS Concepts 

05/19/09, Author: 
Rolf Rabenseifner 

Ø Basic PGAS concept 
•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  

 

o  Trends in hardware  
o  Execution model 
o  Memory model  
o  Run time environments  
o  Comparison with other paradigms 
o  Standardization efforts  
Hands-on session: First UPC and CAF exercise 
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Moore’s Law with Core Doubling 
Rather than Clock Speed 
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Data from Kunle Olukotun, Lance Hammond, Herb Sutter, 
Burton Smith, Chris Batten, and Krste Asanoviç 

Ø Basic PGAS concepts 
•  Trends 

•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  
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Concurrency was Part of the 
Performance Increase in the Past 

Exascale Initiative Steering Committee 

and power, resiliency, programming models, memory bandwidth, I/O, … 

CM-5 

Red Storm 

Increased parallelism 
allowed a 1000-fold 

increase in 
performance while the 
clock speed increased 

by a factor of 40 

Ø Basic PGAS concepts 
•  Trends 

•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  
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Memory is Not Keeping Pace 

Technology trends against a constant or increasing memory per core 
•  Memory density is doubling every three years; processor logic is every two 
•  Storage costs (dollars/Mbyte) are dropping gradually compared to logic costs 

Source: David Turek, IBM 

Cost of Computation vs. Memory 

Question: Can you double concurrency without doubling memory? 

Source: IBM 

Ø Basic PGAS concepts 
•  Trends 

•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  
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Where the Energy Goes 
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Ø Basic PGAS concepts 
•  Trends 

•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  
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Summary of Hardware Trends 

•  All future performance increases will be from concurrency 
•  Energy is the key challenge in improving performance 
•  Data movement is the most significant component of energy use 
•  Memory per floating point unit is shrinking 

Programming model requirements 
•  Control over layout and locality to minimize data movement 
•  Ability to share memory to minimize footprint 
•  Massive fine and coarse-grained parallelism 

Ø Basic PGAS concepts 
•  Trends 

•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications 
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Partitioned Global Address Space  
(PGAS) Languages 

•  Coarray Fortran (CAF) 
–  Compilers from Cray, Rice and Intel (more soon) 

•  Unified Parallel C (UPC) 
–  Compilers from Cray, HP, Berkeley/LBNL, Intrepid (gcc), IBM, 

SGI, MTU, and others 
•  Titanium (Java based) 

–  Compiler from Berkeley 

DARPA High Productivity Computer Systems (HPCS) language 
project: 

•  X10 (based on Java, IBM) 
•  Chapel (Cray)  
•  Fortress (SUN) 

05/19/09, Author: 
Rolf Rabenseifner 

Ø Basic PGAS concepts 
•  Trends 

•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  
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Two Parallel Language Questions 

•  What is the parallel control model? 

•  What is the model for sharing/communication? 

 
 
    implied synchronization for message passing, not shared memory 

data parallel 
(single thread of control) 

dynamic 
threads 

single program 
multiple data (SPMD) 

shared memory 
load 
store 

send 

receive 

message passing 

Ø Basic PGAS concepts 
•  Trends 

•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  
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SPMD Execution Model 

•  Single Program Multiple Data (SPMD) execution model 
–  Matches hardware resources: static number of threads for static 

number of cores è no mapping problem for compiler/runtime 
–  Intuitively, a copy of the main function on each processor 
–  Similar to most MPI applications 

•  A number of threads working independently in a SPMD fashion 
–  Number of threads given as program variable, e.g., THREADS 
–  Another variable, e.g., MYTHREAD specifies thread index 
–  There is some form of global synchronization, e.g., upc_barrier  
–  Control flow (branches) are independent – not lock-step 

•  UPC, CAF and Titanium: all use a SPMD model 
•  HPCS languages: X10, Chapel, and Fortress do not 

–  They support dynamic threading and data parallel constructs 

Ø Basic PGAS concepts 
•  Trends 

•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  
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Data Parallelism   –   HPF 

Real :: A(n,m), B(n,m) 
 
 
do j = 2, m-1 
  do i = 2, n-1 
    B(i,j) =  ... A(i,j)  

 ... A(i-1,j) ... A(i+1,j) 
 ... A(i,j-1) ... A(i,j+1) 

  end do 
end do 

Loop over y-dimension 
Vectorizable loop over x-dimension 

Calculate B, 
     using upper and lower, 
                left and right value of A 

Data definition 

!HPF$ DISTRIBUTE A(block,block), B(...) 

05/19/09, Author: 
Rolf Rabenseifner 

Edited by Kathy Yelick 

•  Data parallel languages use array operations (A = B, etc.) and loops  
•  Compiler and runtime map n-way parallelism to p cores 
•  Data layouts as in HPF can help with assignment using “owner computes” 

•  This mapping problem is one of the challenges in implementing HPF that 
does not occur with UPC and CAF 

 

Ø Basic PGAS concepts 
•  Trends 

•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  
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cilk int fib (int n) { 
  if (n<2) return (n); 
  else { 
    int x,y; 
    x = spawn fib(n-1); 
    y = spawn fib(n-2); 
    sync; 
    return (x+y); 
  } 
} 

Dynamic Tasking - Cilk 

The computation dag and 
parallelism unfold dynamically. 

processors are virtualized; 
no explicit processor number 

•  Task parallel languages are typically implemented with shared memory 
•  No explicit control over locality; runtime system will schedule related 

tasks nearby or on the same core 
•  The HPCS languages support these in a PGAS memory model which 

yields an interesting and challenging runtime problem 

 

Ø Basic PGAS concepts 
•  Trends 

•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  
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Partitioned Global Address Space 
(PGAS) Languages 

•  Defining PGAS principle: extended memory model   
1)  The Global Address Space: a special memory area that allows any 

task to read or write memory anywhere in the system 
2)  It is Partitioned to allow an efficient implementation of distributed 

objects (“symmetric heap”) 

05/19/09, Author: 
Rolf Rabenseifner 

Ø Basic PGAS concepts 
•  Trends 

•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  
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Two Concepts in the Memory Space 

•  Private data: accessible only from a single thread 
–  Variable declared inside functions that live on the program stack are 

normally private to prevent them from disappearing unexpectedly 
•  Shared data: data that is accessible from multiple threads 

–  Variables allocated dynamically in the program heap or statically at 
global scope may have this property 

–  Some languages have both private and shared heaps or static 
variables 

•  Local pointer or reference: refers to local data 
–  Local may be associated with a single thread or a shared memory 

node 
•  Global pointer or reference (pointer-to-shared): may refer to 

“remote” data 
–  Remote may mean the data is off-thread or off-node 
–  Global references are potentially remote; they may refer to local data 

Ø Basic PGAS concepts 
•  Trends 

•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  
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Other Programming Models 

•  Message Passing Interface (MPI) 
–  Library with message passing routines 
–  Unforced locality control through separate address spaces 

•  OpenMP  
–  Language extensions with shared memory worksharing directives 
–  Allows shared data structures without locality control 

OpenMP UPC CAF MPI 

•  UPC / CAF data accesses: 
–  Similar to OpenMP but with locality control 

•  UPC / CAF worksharing:  
–  Similar to MPI  

05/19/09, Author: 
Rolf Rabenseifner 

Ø Basic PGAS concepts 
•  Trends 

•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  
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Understanding Runtime Behavior 
- Berkeley UPC Compiler  

Compiler-generated C code 

UPC Runtime system 

GASNet Communication System 

Network Hardware 

Platform- 
independent 

Network- 
independent 

Language- 
independent 

Compiler- 
independent 

UPC Code UPC Compiler 
Used by bupc and 

gcc-upc 

Used by Cray XT 
UPC + CAF, 

Rice CAF, Chapel, 
Titanium, and others  

Ø Basic PGAS concepts 
•  Trends 

•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  
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UPC Pointers  

•  UPC pointers to shared objects have (conceptually) three fields:  
–  thread number  
–  local address of block 
–  phase (specifies position in the block) so that pointer arithmetic 

operations (like ++) move through the array correctly (more on 
blocks later) 

•  Example implementation 

Phase Thread Virtual Address 

0 37 38 48 49 63 

Ø Basic PGAS concepts 
•  Trends 

•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  
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One-Sided vs Two-Sided 
Communication 

•  A one-sided put/get message can be handled directly by a 
network interface with RDMA support 

–  Avoid interrupting the CPU or storing data from CPU (preposts) 
•  A two-sided messages needs to be matched with a receive to 

identify memory address to put data 
–  Offloaded to Network Interface in networks like Quadrics 
–  Need to download match tables to interface (from host) 
–  Ordering requirements on messages can also hinder bandwidth 

address 

message id 

data payload 

data payload 

one-sided put message 

two-sided message 

network 
 interface 

memory 

host 
CPU 

Ø Basic PGAS concepts 
•  Trends 

•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  
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One-Sided vs. Two-Sided: Practice 

0

100

200

300

400

500

600

700

800

900

10 100 1.000 10.000 100.000 1.000.000

Size (bytes)

B
an

dw
id

th
 (M

B
/s

)

GASNet put (nonblock)"
MPI Flood

R elative	
  B W  (GASNet/MPI)

1, 0
1, 2

1, 4
1, 6

1, 8
2, 0

2, 2
2, 4

10 1000 100000 10000000

S i z e 	
   ( b y t e s )

•  InfiniBand: GASNet vapi-conduit and OSU MVAPICH 0.9.5 
•  Half power point (N ½ ) differs by one order of magnitude 
•  This is not a criticism of the implementation! 

Joint work with Paul Hargrove and Dan Bonachea"

(u
p 

is
 g

oo
d) 

NERSC Jacquard 
machine with 
Opteron processors 

Ø Basic PGAS concepts 
•  Trends 

•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  
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GASNet vs MPI Latency on BG/P 
Ø Basic PGAS concepts 

•  Trends 
•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  
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GASNet vs. MPI Bandwidth on BG/P 

•  GASNet outperforms MPI on small to medium messages, especially when 
multiple links are used. 

Ø Basic PGAS concepts 
•  Trends 

•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  
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FFT Performance on BlueGene/P 

HPC Challenge Peak as of July 09 is 
~4.5 Tflops on 128k Cores 

o  PGAS implementations 
consistently outperform MPI 

o  Leveraging communication/
computation overlap yields 
best performance 
o  More collectives in flight 

and more communication 
leads to better 
performance 

o  At 32k cores, overlap 
algorithms yield 17% 
improvement in overall 
application time 

o  Numbers are getting close to 
HPC record  
o  Future work to try to beat 

the record 
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Ø Basic PGAS concepts 
•  Trends 

•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  
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FFT Performance on Cray XT4 
• 1024 Cores of the Cray XT4 

–  Uses FFTW for local FFTs 
–  The larger the problem size the more effective the overlap 

G 
O 
O 
D 

Ø Basic PGAS concepts 
•  Trends 

•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  
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UPC HPL Performance 

•  Comparison to ScaLAPACK on an Altix, a 2 x 4 process grid 
–  ScaLAPACK (block size 64) 25.25 GFlop/s (tried  several block sizes) 
–  UPC LU (block size 256) - 33.60 GFlop/s, (block size 64) - 26.47 GFlop/s 

•  n = 32000 on a 4x4 process grid 
–  ScaLAPACK - 43.34 GFlop/s (block size = 64)  
–  UPC - 70.26 GFlop/s (block size = 200) 

X1 Linpack Performance
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• Large scaling:  
• 2.2 TFlops on 512p,  
• 4.4 TFlops on 1024p 
(Thunder) 

Ø Basic PGAS concepts 
•  Trends 

•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  
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Support 

•  PGAS in general 
–  http://en.wikipedia.org/wiki/PGAS 
–  http://www.pgas-forum.org/  à PGAS conferences 

•  UPC 
–  http://en.wikipedia.org/wiki/Unified_Parallel_C 
–  http://upc.gwu.edu/  à Main UPC homepage 
–  https://upc-wiki.lbl.gov/UPC/  à UPC wiki 
–  http://upc.gwu.edu/documentation.html  à Language specs 
–  http://upc.gwu.edu/download.html  à UPC compilers 

•  CAF 
–  http://en.wikipedia.org/wiki/Co-array_Fortran 
–  http://www.co-array.org/  (unmaintained) 
–  Part of Fortran 2008  
–  Cray and Intel compilers, gfortran in development 
–  http://www.g95.org/coarray.shtml  (unmaintained)  

05/19/09, Author: 
Rolf Rabenseifner 

Ø Basic PGAS concepts 
•  Trends 

•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  
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Future developments 

•  UPC 
–  Version 1.3 will define additional 

library functions 
–  Feature List: 

§  Improved support for lock 
deallocation, memory 
management, locality control 

§  Non-blocking memory block 
transfers 

§  Atomic Functions 
 

•  CAF 
–  A Technical Specification has 

been proposed – if accepted, 
publication is targeted for 2014 
§  TS to be integrated with next 

revision of the Fortran Standard 
–  Feature List: 

§  Collective Functions 
§  Atomic Functions 
§  One-sided synchronization 

(notify/query with events) 
§  Composable Teams; includes a 

block construct that allows to define 
coarrays which only exist on sub-
sets of images, and limits synchroni-
zation effects to the subset 

Ø Basic PGAS concepts 
•  Trends 

•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  

 

will point out how new features fit into the concepts throughout this talk 

09/05/12, Author: 
R. Bader 

FIXME: further 
new UPC features 

may be missing 



28 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others 

UPC 

•  UPC Language Specification (V 1.2)  
–  The UPC Consortium, June 2005  
–  http://upc.gwu.edu/docs/upc_specs_1.2.pdf 

•  UPC Manual 
–  Sébastien Chauvin, Proshanta Saha, François Cantonnet, Smita 

Annareddy, Tarek El-Ghazawi, May 2005  
–  http://upc.gwu.edu/downloads/Manual-1.2.pdf 

•  UPC Book 
–  Tarek El-Ghazawi, Bill Carlson, Thomas Sterling,  

 and Katherine Yelick, June 2005 

06/15/09, Author: 
Rolf Rabenseifner 

Ø Basic PGAS concepts 
•  Trends 

•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  
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CAF 

•  On WG5 web site: John Reid:  
Co-arrays in the next Fortran Standard  
ISO/IEC JTC1/SC22/WG5 N1824 (April 21, 2010) 
–  ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1824.pdf 

•  Metcalf, Reid and Cohen: Modern Fortran Explained 
      OUP 2011, Chapter 19 
 
Older papers: 
•  Robert W. Numrich and John Reid:  

Co-arrays in the next Fortran Standard  
ACM Fortran Forum (2005), 24, 2, 2-24 and WG5 paper ISO/IEC JTC1/SC22/WG5 
N1642 
–  ftp://ftp.nag.co.uk/sc22wg5/N1601-N1650/N1642.pdf 

•  Robert W. Numrich and John Reid:  
Co-Array Fortran for parallel programming.  
ACM Fortran Forum (1998), 17, 2 (Special Report) and Rutherford Appleton Laboratory 
report RAL-TR-1998-060 available as 
–  ftp://ftp.numerical.rl.ac.uk/pub/reports/nrRAL98060.pdf 

06/15/09, Author: 
Rolf Rabenseifner 

Ø Basic PGAS concepts 
•  Trends 

•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  
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Programming styles with PGAS 

•  Data is partitioned among the processes, i.e., without halos 
–  Fine-grained access to the neighbor elements when needed 
Ø  Compiler has to implement automatically (and together) 

§  pre-fetches 
§  bulk data transfer (instead of single-word remote accesses) 

Ø  May be very slow if compiler’s optimization fails 
•  Application implements halo storage 

–  Application organizes halo updates with bulk data transfer 
Ø  Advantage:  High speed remote accesses 
Ø  Drawbacks:  Additional memory accesses and storage needs  

05/19/09, Author: 
Rolf Rabenseifner 

Ø Basic PGAS concepts 
•  Trends 

•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  
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Coming from MPI   –    
what’s different with PGAS? 

Real :: A(n,m), B(n,m) 
do j = 2, m-1 
  do i = 2, n-1 
    B(i,j) =  ... A(i,j)  

 ... A(i-1,j) ... A(i+1,j) 
 ... A(i,j-1) ... A(i,j+1) 

  end do 
end do 

Call MPI_Comm_size(MPI_COMM_WORLD, size, ierror) 
Call MPI_Comm_rank(MPI_COMM_WORLD, myrank, ierror) 
m1 = (m+size-1)/size;   ja=1+m1*myrank;   je=max(m1*(myrank+1), m) 
jax=ja-1;  jex=je+1   // extended boundary with halo  
 

 
Real :: A(n, jax:jex), B(n, jax:jex) 
do j = max(2,ja), min(m-1,je) 
  do i = 2, n-1 
    B(i,j) =  ... A(i,j)  

 ... A(i-1,j) ... A(i+1,j) 
 ... A(i,j-1) ... A(i,j+1) 

  end do 
end do 
 
Call MPI_Send(.......)  ! - sending the boundary data to the neighbors 
Call MPI_Recv(.......)  ! - receiving from the neighbors,  

 !   storing into the halo cells 

Loop over y-dimension 
Vectorizable loop over x-dimension 

Calculate B, 
     using upper and lower, 
                left and right value of A 

Data definition 

size  = num_images() 
myrank  = this_image() – 1  

! Local halo  =  remotely computed data 
  B(:,jex)  =  B(:,1)[myrank+1] 
  B(:,jax)  =  B(:,m1)[myrank–1] 

!  Trick in this program:  
!  Remote memory access instead of  
!  MPI send and receive library calls  

ja=1; je= m1;   ! Same values on all processes  

jaloop,  jeloop   ! Orig.: 2, m-1  

ja_loop=1; if(myrank==0) jaloop=2; jeloop=min((myrank+1)*m1,m–1) – myrank*m1;  

in original 
index range 

remove range of 
lower processes 

05/19/09, Author: 
Rolf Rabenseifner 

Ø Basic PGAS concepts 
•  Trends 

•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  
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Irregular Applications 

•  The SPMD model is too restrictive for some “irregular” 
applications 

–  The global address space handles irregular data accesses: 
§  Irregular in space (graphs, sparse matrices, AMR, etc.) 
§  Irregular in time (hash table lookup, etc.): for reads, UPC handles this 

well; for writes you need atomic operations 

–  Irregular computational patterns are more difficult: 
§  Not statically load balanced (even with graph partitioning, etc.) 
§  Some kind of dynamic load balancing needed (e.g., a task queue) 

•  Design considerations for dynamic scheduling UPC 
–  For locality reasons, SPMD still appears to be best for regular 

applications; aligns threads with memory hierarchy 
–  UPC serves as “abstract machine model” so dynamic load 

balancing as an add-on may be written in portable UPC 

Ø Basic PGAS concepts 
•  Trends 

•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  
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// allocate a distributed task queue 
taskq_t * taskq_all_alloc(); 
// enqueue a task into the distributed queue 
int taskq_put(taskq_t *, void *func, 
                      void *in, void *out); 
// run a task from the local task queue 
// returns 0 if no task is available locally 
int taskq_execute(taskq_t *); 
// try to steal tasks from a random victim 
int taskq_steal(taskq_t *); 
// test whether queue is globally empty 
int  taskq_isEmpty(taskq_t *); 
// free distributed task queue memory  
int  taskq_all_free(taskq_t *);  

Distributed Tasking API for UPC 
(http://upc.lbl.gov/task) 

sh
ar

ed
 

pr
iv

at
e 

enqueue dequeue 

internals are hidden from 
user, except that dequeue 
operations may fail and 
provide hint to steal 

Ø Basic PGAS concepts 
•  Trends 

•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  
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UPC Tasking on 
Nehalem 8 core SMP 
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UPC Tasking 
OpenMP Tasking 

Ø Basic PGAS concepts 
•  Trends 

•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  
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Multi-Core Cluster Performance 

UTS (T1XL) FIB (48) NQueen (15x15) 

39.5 40.1 43.1 43.0 

58.7 59.5 66.5 71.4 
82.9 84.1 

113.6 116.9 

80.3 
96.1 

152.7 
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128.2 
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Speedup 16.5 % 5.6% 25.9% 
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Ø Basic PGAS concepts 
•  Trends 

•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  
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Hierarchical PGAS Model 

•  A global address space for hierarchical machines may have multiple 
kinds of pointers 

•  These can be encoded by programmers in type system or hidden, 
e.g., all global or only local/global 

•  This partitioning is about pointer span, not privacy control   
(although one may want to align with parallelism) 

B 

span 1 
(core local) 

span 2 
(chip local) 

level 3 
(node local) 

level 4 
(global world) 

C 
D 

A 
1 

2 
3 4 

Ø Basic PGAS concepts 
•  Trends 

•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  
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Hybrid Partitioned Global Address 
Space 

Local 
Segment 
on Host  
Memory 

Processor 1 

Shared 
Segment 
on Host 
Memory 

Local 
Segment 
on GPU  
Memory 

Local 
Segment 
on Host  
Memory 

Processor 2 

Local 
Segment 
on GPU  
Memory 

Local 
Segment 
on Host  
Memory 

Processor 3 

Local 
Segment 
on GPU  
Memory 

Local 
Segment 
on Host  
Memory 

Processor 4 

Local 
Segment 
on GPU  
Memory 

v  Each thread has only two shared segments, which can be 
either in host memory or in GPU memory, but not both.  

v  Decouple the memory model from execution models; 
therefore it supports various execution models. 

v  Caveat: type system and therefore interfaces blow up with 
different parts of address space 

Shared 
Segment 
on GPU 
Memory 

Shared 
Segment 
on Host 
Memory 

Shared 
Segment 
on GPU 
Memory 

Shared 
Segment 
on Host 
Memory 

Shared 
Segment 
on GPU 
Memory 

Shared 
Segment 
on Host 
Memory 

Shared 
Segment 
on GPU 
Memory 

Ø Basic PGAS concepts 
•  Trends 

•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  
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GASNet GPU Extension Performance 

Latency Bandwidth 

Good Good 
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Compilation and Execution 

•  On Cray XE6,  hopper.nersc.gov (at NERSC), with PGI compiler 
–  UPC only 
–  Initialization: module load bupc 
–  Compile with fixed thread count:  

§  upcc –O –T=4 -o myprog myprog.c 
–  Compile with dynamic thread count:  

§  upcc –O -o myprog myprog.c 
–  Compile with debugging checks (assertions) enabled: 

§  upcc –g [–T=4] -o myprog myprog.c 
–  Execute (interactive test on 1 node with 24 cores): 

§  qsub -I –q special -lmppwidth=24,mppnppn=24, \ 
                      walltime=00:30:00 -V 

§  upcrun -n 4 –cpus-per-node 24 ./myprog 

06/15/09, Author: 
Rolf Rabenseifner 

Ø Basic PGAS concepts 
•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  

  

see also 
UPC-pgi 

Number of UPC threads:  
Must equal the compile-time 

„-T“ setting, if any 

recommended for 
any development work 
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Compilation and Execution 

•  On Cray XE6,  hopper.nersc.gov (at NERSC),  with Cray compilers 
–  Initialization: module switch PrgEnv-pgi PrgEnv-cray 
–  Compile:  

§  UPC: cc -h upc -o myprog myprog.c 
§  CAF: ftn –e m –h caf -o myprog myprog.f90 

–  Execute (interactive test on 1 nodes with 24 cores): 
§  qsub -I –q special -lmppwidth=24,mppnppn=24, \ 
                     walltime=00:30:00 -V 

§  aprun -n 24 -N 24 ./myprog    (all 24 cores in the node are used) 
§  aprun -n 12 -N 12 ./myprog    (only 12 cores are used) 

06/15/09, Author: 
Rolf Rabenseifner 

Ø Basic PGAS concepts 
•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  

  

see also 
Cray UPC 

see also 
Cray Fortran 
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First exercise – part 1 

•  Purpose:  
–  use of compiler and run time 

environment 
–  use basic intrinsics 

•  Copy skeleton program to your 
working directory: 

–  cp ../hello/hello_serial.f90   hello_caf_1.f90 
–  cp ../hello/hello_serial.c      hello_upc_1.c 

•  Add statements to enable 
running in parallel 

–  each task should write its rank and 
the number of tasks 

–  only one task should write „hello 
world“ 

•  Compile and run 
–  with 4 tasks 

 

 

Ø Basic PGAS concepts 
• Exercises 

•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  

  

hello 

integer :: myrank,numprocs 
… 
myrank   = this_image() 
numprocs = num_images() 
if (myrank == 1) & 
    print *, 'Hello world' 
print *,'I am image number', & 
    myrank,' of ',numprocs 

Fortran 

#include <upc.h> 
…  
if (MYTHREAD == 0)    
    printf("hello world\n"); 
printf("I am thread number %d    
  of %d threads\n",  
  MYTHREAD, THREADS); 

C 
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First exercise – part 2 

•  Purpose:  
–  first attempt at data transfer 

•  Copy program from part 1:  
–  cp   hello_caf_1.f90    hello_caf_2.f90 
–  cp   hello_upc_1.c      hello_upc_2.c 

•  Add declaration for 
–  an integer coarray  x (CAF) 
–  an integer shared variable x (UPC) 

•  Assign rank value on each 
task  to x 

•  All tasks but the first should 
print the value of x on the first 
task 

–  observe what happens if run 
repeatedly with more than one 
image/thread 

 

Ø Basic PGAS concepts 
• Exercises 

•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  

  

hello 

integer :: x[*] = 0 
: 
x = 99+this_image() 
if (this_image() > 1) then 
  write(*, *) ‘x from 1 on‘, & 
      this_image(), ‘ is ‘,x[1] 
end if 

Fortran 

shared [*] int x[THREADS]; 
: 
x[MYTHREAD] = 100+MYTHREAD; 
if (MYTHREAD > 0) { 
  printf(“x from 0 on %d is %d\n“  
         , MYTHREAD, x[0]); 
} 

C 

incorrect. why? 

incorrect. why? 
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First exercise – part 3 

•  Purpose:  
–  add necessary synchronization 

•  Copy program from part 2:  
–  cp   hello_caf_2.f90    hello_caf_3.f90 
–  cp   hello_upc_2.c      hello_upc_3.c 

•  Add synchronization 
statement 

•  Check correctness of results 
 

Ø Basic PGAS concepts 
• Exercises 

•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  

  

hello 

integer :: x[*] = 0 
: 
x = 99+this_image() 
sync all 
if (this_image() > 1) then 
  write(*, *) ‘x from 1 on‘, & 
      this_image(), ‘ is ‘,x[1] 
end if 

Fortran 

shared [*] int x[THREADS]; 
: 
x[MYTHREAD] = 100+MYTHREAD; 
upc_barrier; 
if (MYTHREAD > 0) { 
  printf(“x from 0 on %d is %d\n“  
         , MYTHREAD, x[0]); 
} 

C 
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UPC and CAF Basic Syntax  

05/19/09, Author: 
Rolf Rabenseifner 

•  Basic PGAS concepts 
Ø UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  

  

o  Declaration of shared data / coarrays  
o  Intrinsic procedures for handling shared data  

-  elementary work sharing 

o  Synchronization:  
-  motivation  –  race conditions;  
-  rules for access to shared entities by different threads/images  

o  Dynamic entities and their management:  
-  UPC pointers and allocation calls  
-  CAF allocatable entities and dynamic type components  
-  Object-based and object-oriented aspects  

Hands-on: Exercises on basic syntax and dynamic data  

https://fs.hlrs.de/projects/rabenseifner/publ/SC2012-PGAS.html 
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Partitioned Global Address Space:  
Distributed variable 

•  Declaration:  
–  UPC:  shared float x[THREADS]; // statically allocated outside of functions 

–  CAF:  real :: x[0:*] 
•  Data distribution: 

x[0] x[1] x[2] x[3] x[4] x[5] 

UPC: “Parallel dimension” 

CAF: “Codimension” 

Process 0 Process 1 Process 2 Process 3 Process 4 Process 5 

05/19/09, Author: 
Rolf Rabenseifner 

•  Basic PGAS concepts 
Ø UPC and CAF basic syntax 

•  Shared entities  
•  Advanced synchronization  

concepts  
•  Applications  
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Partitioned Global Address Space:  
Distributed array 

•  Declaration:  
–  UPC:  shared float x[3][THREADS]; // statically allocated outside of functions  

–  CAF:  real :: x(0:2)[0:*] 
•  Data distribution: 

x(0)[0] 
x(1)[0] 
x(2)[0] 

UPC: “Parallel dimension” 

CAF: “Codimension” 

x(0)[1] 
x(1)[1] 
x(2)[1] 

x(0)[2] 
x(1)[2] 
x(2)[2] 

x(0)[3] 
x(1)[3] 
x(2)[3] 

x(0)[4] 
x(1)[4] 
x(2)[4] 

x(0)[5] 
x(1)[5] 
x(2)[5] 

Process 0 Process 1 Process 2 Process 3 Process 4 Process 5 

[2] in UPC (2) in CAF 

05/19/09, Author: 
Rolf Rabenseifner 

•  Basic PGAS concepts 
Ø UPC and CAF basic syntax 

• Shared entities 
•  Advanced synchronization  

concepts  
•  Applications  
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Distributed arrays with UPC 

•  UPC shared objects may be statically allocated 
•  Definition of shared data: 

–  shared [blocksize] type variable_name; 
–  shared [blocksize] type array_name[dim1]; 
–  shared [blocksize] type array_name[dim1][dim2]; 
–  … 

•  Default: blocksize=1 if no “[…]” given (different from “[]”, which we see later) 
•  The distribution is always round robin with chunks of blocksize elements 
•  Blocked distribution is implied if last dimension==THREADS and blocksize==1  

the dimensions  
define which  

elements exist 

See next slides 

05/19/09, Author: 
Rolf Rabenseifner 

•  Basic PGAS concepts 
Ø UPC and CAF basic syntax 

• Shared entities 
•  Advanced synchronization  

concepts  
•  Applications  
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UPC shared data  –  examples  

a[ 0] 
a[ 4] 
a[ 8] 
a[12] 
a[16] 

a[ 1] 
a[ 5] 
a[ 9] 
a[13] 
a[17] 

a[ 2] 
a[ 6] 
a[10] 
a[14] 
a[18] 

a[ 3] 
a[ 7] 
a[11] 
a[15] 
a[19] 

Thread 0 Thread 1 Thread 2 Thread 3 

shared [1] float a[20];  // or 
shared     float a[20];  

a[ 0] 
a[ 1] 
a[ 2] 
a[ 3] 
a[ 4] 

a[ 5] 
a[ 6] 
a[ 7] 
a[ 8] 
a[ 9] 

a[10] 
a[11] 
a[12] 
a[13] 
a[14] 

a[15] 
a[16] 
a[17] 
a[18] 
a[19] 

Thread 0 Thread 1 Thread 2 Thread 3 

shared [5] float a[20];  // or 
define N 20 
shared [N/THREADS] float a[N];  

a[0][0] 
a[1][0] 
a[2][0] 
a[3][0] 
a[4][0] 

Thread 0 Thread 1 Thread 2 Thread 3 

shared [1] float a[5][THREADS]; 
// or 
shared     float a[5][THREADS];  

a[0][1] 
a[1][1] 
a[2][1] 
a[3][1] 
a[4][1] 

a[0][2] 
a[1][2] 
a[2][2] 
a[3][2] 
a[4][2] 

a[0][3] 
a[1][3] 
a[2][3] 
a[3][3] 
a[4][3] 

a[0][0] 
a[0][1] 
a[0][2] 
a[0][3] 
a[0][4] 

Thread 0 Thread 1 Thread 2 Thread 3 

shared [5] float a[THREADS][5]; 

identical at compile time THREADS=1st dim! 

a[1][0] 
a[1][1] 
a[1][2] 
a[1][3] 
a[1][4] 

a[2][0] 
a[2][1] 
a[2][2] 
a[2][3] 
a[2][4] 

a[3][0] 
a[3][1] 
a[3][2] 
a[3][3] 
a[3][4] 

05/19/09, Author: 
Andrew Johnson, 

Rolf Rabenseifner 

Courtesy of Andrew Johnson 

•  Basic PGAS concepts 
Ø UPC and CAF basic syntax 

• Shared entities 
•  Advanced synchronization  

concepts  
•  Applications  
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UPC shared data  –   
examples (continued)  

 a[0]  a[1]  a[2]  a[3] 

Thread 0 Thread 1 Thread 2 Thread 3 

shared float a[THREADS]; // or 
shared [1] float a[THREADS];  

a[ 0] 
a[ 1] 
a[ 8] 
a[ 9] 
a[16] 
a[17] 

a[ 2] 
a[ 3] 
a[10] 
a[11] 
a[18] 
a[19] 

a[ 4] 
a[ 5] 
a[12] 
a[13] 

a[ 6] 
a[ 7] 
a[14] 
a[15] 

Thread 0 Thread 1 Thread 2 Thread 3 

shared [2] float a[20]; 

   a 

Thread 0 Thread 1 Thread 2 Thread 3 

shared float a;  
// located only in thread 0 

a[ 0] 
a[ 1] 
a[ 2] 
… 
a[ 9] 
 Thread 0 Thread 1 Thread 2 Thread 3 

shared [ ] float a[10]; 

Blank blocksize à located only in thread 0 
upc_threadof(&a[15]) == 3 

05/19/09, Author: 
Andrew Johnson, 

Rolf Rabenseifner 

Courtesy of Andrew Johnson 

•  Basic PGAS concepts 
Ø UPC and CAF basic syntax 

• Shared entities 
•  Advanced synchronization  

concepts  
•  Applications  
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Integration of the type system 
(static type components) 

•  CAF: 

–  compare this with effort needed 
 to implement the same with MPI (dispense with all of MPI_TYPE_* API) 

–  what about dynamic type components? à later in this talk 

 

•  UPC: 
type :: body 
  real :: mass 
  real :: coor(3) 
  real :: velocity(3) 
end type 

type(body) :: asteroids(100)[*] 
type(body) :: s 
: 
if (this_image() == 2) & 
    s = asteroids(5)[1] 

typedef struct { 
  float mass; 
  float coor[3]; 
  float velocity[3]; 
} Body; 

declare and use entities of this type (symmetric variant): 

shared [100] \ 
   Body asteroids[THREADS][100]; 
Body s; 
: 
if (MYTHREAD == 1) { 
  s = asteroids[0][4]; 
} 

•  Basic PGAS concepts 
Ø UPC and CAF basic syntax 

• Shared entities 
•  Advanced synchronization  

concepts  
•  Applications  
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Local access to local part  
of distributed variables (1) 

•  UPC: 

 
–  *x_local now equals x[MYTHREAD] 
–  can be used in its place for 

§  clearer and more efficient code 
§  passing data to standard (serial) numerical libraries 

–  NOTE: generally, only allowed when datum x[i] has “local affinity” 

  
–  FUTURE (UPC 1.3): equivalent for “intranode” sharing: 
 

shared float x[THREADS]; 
float *x_local; 
 
x_local = (float *) &x[MYTHREAD]; 

•  Basic PGAS concepts 
Ø UPC and CAF basic syntax 

• Shared entities 
•  Advanced synchronization  

concepts  
•  Applications  

  

upc_threadof(&x[i]) == MYTHREAD 

if (upc_castable(&x[i])) { 
 x_local = upc_cast(&x[i]); 

} 05/19/09, Author: 
Rolf Rabenseifner 
Modified for SC12  

by R. Bader 

Overrides compile-time 
type checking 

Enforces compile-time 
type checking 
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Local access to local part  
of distributed variables (2) 

•  CAF:  (0-based ranks)                             (1-based ranks)  
 
 
 
 
 
 
•  Most efficient way of accessing data 

–  For non-coindexed coarrays, it is guaranteed that no cross-image 
accesses occur    

–  Therefore, the compiler can optimize code as if it were regular serial 
code                       

real :: x[0:*] 
numprocs=num_images() 
myrank  =this_image()–1 
 
x = … 
! x now equals x[myrank] 

real :: x[*] 
numprocs=num_images() 
myrank  =this_image() 
 
x = … 
! x now equals x[myrank] 

05/19/09, Author: 
Rolf Rabenseifner 
Modified for SC12  

by R. Bader 

•  Basic PGAS concepts 
Ø UPC and CAF basic syntax 

• Shared entities 
•  Advanced synchronization  

concepts  
•  Applications  
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CAF-only:  Multidimensional  
coindexing 

•  Coarrays may have a corank larger than 1 
•  Each variable may use a different coindex range 

integer :: numprocs, myrank, coord1, coord2, coords(2) 
real :: x[0:*] 
real :: y[0:1,0:*] ! high value of last coord must be * 
 
numprocs = num_images() 
myrank   = this_image(x,1) ! x is 0-based 
coord1   = this_image(y,1) 
coord2   = this_image(y,2) 
coords   = this_image(y)   ! coords-array! 
 
x now equals x[myrank] 
y now equals y[coord1,coord2]  
         and y[coords(1),coords(2)] 

05/19/09, Author: 
Rolf Rabenseifner 

•  Basic PGAS concepts 
Ø UPC and CAF basic syntax 

• Shared entities 
•  Advanced synchronization  

concepts  
•  Applications  
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Remote access intrinsic support 

•  CAF: Inverse to this_image(): the image_index() intrinsic 
–  delivers the image corresponding to a coindex tuple 

 
 

–  provides necessary information e.g., for future synchronization 
statements (to be discussed) 

•  UPC: upc_threadof() provides analogous information 

•  Basic PGAS concepts 
Ø UPC and CAF basic syntax 

• Shared entities 
•  Advanced synchronization  

concepts  
•  Applications  

  

integer :: remote_image 
real :: y[0:1,0:*] ! high value of last coord must be * 
 
remote_image = image_index(y, (/ 1, 2 /)) 
 

image on which y[1, 2] resides; 
zero if coindex tuple is invalid 
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Work sharing (1) 

•  Loop execution 
–  simplest case: all data are 

generated locally 

–  chunking variants 
(me=this_image()) 

•  CAF data distribution 
–  in contrast to UPC, data model 

is fragmented 
–  trade-off: performance vs. 

programming complexity 

–  blocked distribution: 

 (block size: depends on number of 
images; number of actually used 
elements may vary between 
images) 

–  alternatives: cyclic, block-cyclic 

do i=1, n  
  : ! do work 
end do   

do i=me,n,num_images()  
  : ! do work 
end do   

: ! calculate chunk 
do i=(me-1)*chunk+1,min(n,me*chunk)  
  : ! do work 
end do   

a1,…,aN 

 

numeric model: array of size N 

a1,…,ab ab+1,…,a2b …,aN 

•  Basic PGAS concepts 
Ø UPC and CAF basic syntax 

• Shared entities 
•  Advanced synchronization  

concepts  
•  Applications  
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Work sharing (2) 
data distribution + avoiding non-local accesses 

•  CAF: 
–  index transformations between 

local and global 

 
•  UPC: global data model 

–  loop over all, work on subset 

 
–  conditional may be inefficient 
–  cyclic distribution may be slow 

•  UPC: upc_forall 
–  integrates affinity with loop 

construct 

 
–  affinity expression: 

 an integer à execute if i
%THREADS == MYTHREAD 
 a global address à execute if 
upc_threadof(…) == MYTHREAD 

 continue or empty à all 
threads (use for nested upc_forall) 

–  example above: could replace „i“ 
with „&a[i]“  

integer :: a(ndim)[*] 
do i_local=1, nlocal  
   i_global = …  
   a(i_local) = … 
end do   

shared int a[N]; 
for (i=0; i<N; i++) { 
  if (i%THREADS == MYTHREAD) { 
     a[i] = … ; 
  } 
} 

shared int a[N]; 
upc_forall (i=0; i<N; i++; i) { 
   a[i] = … ; 
} affinity expression 

may vary   
between images 

•  Basic PGAS concepts 
Ø UPC and CAF basic syntax 

• Shared entities 
•  Advanced synchronization  

concepts  
•  Applications  

  

function of 
(i_local, 

this_image()) 

expression 
depends on 
i_global 
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Typical collective execution  
with access epochs  

(= synchronization phases) 

UPC: *x_local = 17.0; 
CAF:  x = 17.0 
 
Barrier synchronization 
 
UPC: printf( … , x[1]) 
CAF:  print *, x[1] 
 
Barrier synchronization 
 
UPC: x[0] = 29.0; 
CAF:  x[0] = 29.0 
… 

Process 0 
UPC: *x_local = 33.0; 
CAF:  x = 33.0 
 
Barrier synchronization 
 
UPC: printf( … , x[0]) 
CAF:  print *, x[0] 
 
Barrier synchronization 
 
UPC: x[1] = 78.0; 
CAF:  x[1] = 78.0 
… 

Process 1 
1.  Local accesses on  

shared data 

2.  Barrier until all 
processes have 
finished 
their local accesses   

3.  Remote accesses 

4.  Barrier until all  
processes have 
finished 
their remote accesses 

5.  Local accesses to 
shared data 

 
Both notations  
are equivalent 

05/19/09, Author: 
Rolf Rabenseifner 

•  Basic PGAS concepts 
Ø UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  

  

(CAF: segments) 

Barrier synchronization is required to ensure 
•   local writes in step 1 precede remote reads in step 3 
•   remote reads in step 3 precede local writes in step 5 
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Collective execution –  
same with remote write / local read  

UPC: x[1] = 33.0; 
CAF:  x[1] = 33.0 
 
Barrier synchronization 
 
UPC: printf(…, *x_local) 
CAF:  print *, x 
 
Barrier synchronization 
 
UPC: x[1] = 78.0; 
CAF:  x[1] = 78.0 
… 

Process 0 
UPC: x[0] = 17.0; 
CAF:  x[0] = 17.0 
 
Barrier synchronization 
 
UPC: printf(…, *x_local) 
CAF:  print *, x 
 
Barrier synchronization 
 
UPC: x[0] = 29.0; 
CAF:  x[0] = 29.0 
… 

Process 1 
1.  Remote accesses on  

shared data 

2.  Barrier until all 
processes have 
finished 
their remote accesses 

3.  Local accesses 

4.  Barrier until all  
processes have 
finished 
their local accesses 

5.  Remote accesses 

 

05/19/09, Author: 
Rolf Rabenseifner 

•  Basic PGAS concepts 
Ø UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  

  

Previous example with local/remote exchanged: 
Barrier synchronization is required to ensure 
•   remote writes in step 1 precede local reads in step 3 
•   local reads in step 3 precede remote writes in step 5 
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Synchronization 

•  Between a write access and a (subsequent or preceding) read or write 
access of the same data from different processes, 
a synchronization of the processes must be done! 

•  Most simple synchronization:  
à barrier between all processes  

•  UPC: 

 
•  CAF: 
 
 
 
•  Not the only synchronization mechanism, but the simplest one available 

Accesses to distributed data by some/all processes 
upc_barrier; 
Accesses to distributed data by some/all processes 

Accesses to distributed data by some/all processes 
sync all 
Accesses to distributed data by some/all processes 

05/19/09, Author: 
Rolf Rabenseifner 

Otherwise 
race condition! 

•  Basic PGAS concepts 
Ø UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  
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Examples 

•  UPC: 

•  CAF: 

shared float x[THREADS]; 
x[MYTHREAD] = 1000.0 + MYTHREAD; 
upc_barrier; 
printf(“myrank=%d, x[neighbor=%d]=%f\n”, 
 myrank, (MYTHREAD+1)%THREADS,  
       x[(MYTHREAD+1)%THREADS]); 

real :: x[0:*] 
integer :: myrank, numprocs 
numprocs=num_images();  myrank=this_image()–1 
x = 1000.0 + myrank 
sync all 
print *, ‘myrank=‘, myrank,  
         ‘x[neighbor=‘, mod(myrank+1,numprocs), 
         ‘]=‘, x[mod(myrank+1,numprocs)] 

write 
sync 

read 

write 
sync 

read 

05/19/09, Author: 
Rolf Rabenseifner 

•  Basic PGAS concepts 
Ø UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  
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Another example 
•  Basic PGAS concepts 
Ø UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications  

  

shared float x[THREADS]; 
while (!converged(x)) { 
  float tmp = 0.5*x[MYTHREAD] 
            - 0.25*x[(MYTHREAD+1)%THREADS] 
            - 0.25*x[(MYTHREAD-1+THREADS)%THREADS]; 
  upc_barrier; 
  x[MYTHREAD] = tmp; 
  upc_barrier; 
} 

read 

sync 

sync 
write 

read 

Note that real applications must do more work between synchronizations 
or performance will be horrible. 



62 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others 

UPC and CAF Basic Syntax  

05/19/09, Author: 
Rolf Rabenseifner 

•  Basic PGAS concepts 
Ø UPC and CAF basic syntax 

• Shared entities 
•  Advanced synchronization  

concepts  
•  Applications  

  

o  Declaration of shared data / coarrays  
o  Intrinsic procedures for handling shared data 

-  elementary work sharing 
o  Synchronization:  

-  motivation  –  race conditions;  
-  rules for access to shared entities by different threads/images 
  

o  Dynamic entities and their management:  
-  UPC pointers and allocation calls  
-  CAF allocatable entities and dynamic type components  
-  Object-based and object-oriented aspects   

Hands-on: Exercises on basic syntax and dynamic data  
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Dynamic allocation with CAF 

•  Coarrays may be allocatable: 

–  synchronization across all images is then implied at completion of the 
ALLOCATE statement (as well as at the start of DEALLOCATE) 

•  Same shape on all processes is required! 

•  Coarrays with POINTER attribute are not supported 

–  this may change in the future 

real,allocatable :: a(:,:)[:] ! Example: Two-dim. + one codim. 
allocate( a(0:m,0:n)[0:*] )   ! Same m,n on all processes  

real,allocatable :: a(:)[:]         ! INCORRECT example 
allocate( a(myrank:myrank+1)[0:*] ) ! NOT supported  

05/19/09, Author: 
Rolf Rabenseifner 

•  Basic PGAS concepts 
Ø UPC and CAF basic syntax 

• Dynamic 
•  Advanced synchronization  

concepts  
•  Applications  

  

real,pointer :: ptr[*]  ! NOT supported: pointer coarray 

deferred shape/coshape 
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Dynamic entities: Pointers 

•  Remember pointer semantics 
–  different between C and Fortran 

 
•  Pointers and PGAS memory categorization 

–  both pointer entity and pointee might be private or shared  
 à 4 combinations theoretically possible 

 
–  UPC: three of these combinations are useful in practice 
–  CAF: only two of the combinations allowed, and only in a limited manner       

        ß aliasing is allowed only to local entities 

 
<type> , [dimension (:[,:,…])], pointer :: ptr 
 
ptr => var       ! ptr is an alias for target var 

  
<type> *ptr; 
 
ptr = &var;      ! ptr holds address of var 

 

no pointer arithmetic 
type and rank matching 

pointer arithmetic 
rank irrelevant 
pointer-to-pointer 
pointer-to-void / recast 

Fo
rtr

an
 

C 
•  Basic PGAS concepts 
Ø UPC and CAF basic syntax 

• Dynamic  
•  Advanced synchronization  

concepts  
•  Applications  

  

10/18/09, Author: 
R. Bader 
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•  UPC: 

–  pointer to shared: addressing 
overhead 

•  CAF: 

–  entity „o“: typically asymmetric 

Pointers continued … 

 o[1]%p2                            i1[3]         i1[4]                        

i2 i2    ix p1 

 
integer, target :: i1[*] 
integer, pointer :: p1 
 
type :: ctr 
  integer, pointer :: p2(:) 
end type 
type(ctr) :: o[*] 
integer, target :: i2(3) 
 

ix=o[1]%p2 

a coarray cannot have the  
pointer attribute 

int *p1; 
shared int *p2; 
int *shared p3; 
 
 
shared int *shared p4; 
int a[N]; 
shared int b[N]; 

    p4               
     p3                       

 p1     a[0]  p2      p2 a [0] 

deprecated 

problem: where does p3 point? 
all other threads may not reference 

(alias+coindexing) vs. address 

p1 => i1 

p2 = &b[1]; b[1] p3 
ref./def. 

•  Basic PGAS concepts 
Ø UPC and CAF basic syntax 

• Dynamic  
•  Advanced synchronization  

concepts  
•  Applications  

  

10/18/09, Author: 
R. Bader 

UPC: four combinations: 
p1: private pointer to 

private memory 
p2: private to shared 
p3: shared to private 
p4: shared to shared 
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Pointer to local portions  
of shared data (review) 

•  Cast a shared entity to a local pointer  

 
•  May have performance advantages 
•  May improve code readability 
•  Required when passing to non-UPC numerical libraries 

 
•  Breaking the local-affinity rule (e.g., using a_local[5])  

results in undefined behavior 
 

shared float a[5][THREADS]; 
float *a_local; 
 
a_local = (float *) &a[0][MYTHREAD]; 
 
a_local[0] is identical with a[0][MYTHREAD] 
a_local[1] is identical with a[1][MYTHREAD] 
… 
a_local[4] is identical with a[4][MYTHREAD] 

05/19/09, Author: 
Rolf Rabenseifner 

•  Basic PGAS concepts 
Ø UPC and CAF basic syntax 

• Dynamic  
•  Advanced synchronization  

concepts  
•  Applications  

  

address must have affinity 
to local thread 

pointer arithmetic 
selects local part 
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UPC: to-shared Pointer 
blocking and casting 

•  Assume 4 threads: 

•  Block size is a part of the variable‘s type  
•  One may cast between pointers with different block sizes  

–  pointer arithmetic follows blocking („phase“) of pointer (not pointee)! 
–  cast changes the view but does not move any data 

•  Consequences for libraries à see later 

shared [2] int A[10]; 
shared int *p2; 
shared [2] int *q2; 

A[0] 
A[1] 
A[8] 
A[9] 

A[2] 
A[3] 
 

A[4] 
A[5] 
 

A[6] 
A[7] 
 

Thread  0                     1                      2                      3 
if (MYTHREAD == 1) { 
 p2 = (shared int *)&A[0]; 
 p2 += 4;  
 q2 = &A[0]; 
 q2 += 4; 
} 

 p2  q2 after pointer increment 

•  Basic PGAS concepts 
Ø UPC and CAF basic syntax 

• Dynamic  
•  Advanced synchronization  

concepts  
•  Applications  

  

block size 
different from A 

block size same 
as for  A 

strange sequence 

natural sequence 
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UPC dynamic Memory Allocation 

•  upc_all_alloc 
–  Collective over all threads (i.e., all threads must call) 
–  All threads get a copy of the same pointer to shared memory 

–  Similar result as with static allocation at compile time: 

–  Example: 

shared void *upc_all_alloc( size_t nblocks, size_t nbytes) 

Shared data allocated by upc_all_alloc  

Global	
  
access	
  

shared [nbytes] char[nblocks*nbytes]; 

Run time arguments 

05/19/09, Author: 
Rolf Rabenseifner 

•  Basic PGAS concepts 
Ø UPC and CAF basic syntax 

• Dynamic  
•  Advanced synchronization  

concepts  
•  Applications  

  

shared [1] float *A; 
A = (shared [1] float *) upc_all_alloc( n, sizeof(float) ); 
for (i=MYTHREAD; i<n; i+=THREADS) A[i] = …; 

All threads may access A[i], i=0..n-1.  Here, only the owning thread accesses A[i].  

Compile-time constant!  Run-time expression!  
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UPC dynamic Memory Allocation (2) 

•  upc_global_alloc 
–  Only the calling thread gets a pointer to shared memory 

shared void *upc_global_alloc( size_t nblocks, size_t nbytes) 

Shared data allocated by upc_global_alloc  

Global	
  
access	
  

05/19/09, Author: 
Rolf Rabenseifner 

•  Basic PGAS concepts 
Ø UPC and CAF basic syntax 

• Dynamic  
•  Advanced synchronization  

concepts  
•  Applications  
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UPC dynamic Memory Allocation (3) 

•  upc_alloc 
–  Allocates memory in the local thread that is accessible by all threads 
–  Only on calling processes 

–  Similar result as with static allocation at compile time: 

shared void *upc_alloc( size_t nbytes ) 

Global	
  
access	
  

shared [] char[nbytes]; // but with affinity to the calling thread 

05/19/09, Author: 
Rolf Rabenseifner 

•  Basic PGAS concepts 
Ø UPC and CAF basic syntax 

• Dynamic  
•  Advanced synchronization  

concepts  
•  Applications  

  

shared pointer to 
shared needed in 

most cases 
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Common mistakes with dynamic 
allocation 

•  shared int *p1 = upc_alloc(…); 
–  p1 is cyclic, but the allocation is indefinite (all on calling thread) 
–  Use of p1[1]might crash or might silently access wrong datum 
–  Probably meant either of the following: 
shared int *p1 = upc_global_alloc(…); //cyclic 
shared [] int *p1 = upc_alloc(…); //indefinite 

•  shared [2] int *p2 = upc_all_alloc(2, N*sizeof(int)) 
–  Not always an error, but pretty often: 

first 2 is the size of a block, second 2 is the number of blocks 
–  Probably meant either of the following: 

upc_all_alloc(N, 2*sizeof(int));   // 2*N elements 
upc_all_alloc(N/2, 2*sizeof(int)); // N elements 

•  Multiple calls to upc_free()for memory allocated by upc_all_alloc() 
–  Even though all threads call upc_all_alloc(), only one object is 

allocated and it must be freed (at most) once. 
–  FUTURE: UPC 1.3 introduces upc_all_free() to help avoid this 

•  Basic PGAS concepts 
Ø UPC and CAF basic syntax 

• Dynamic  
•  Advanced synchronization  

concepts  
•  Applications  
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The addresses are 
stored in a p4-pointer, 

i.e., are accessible from 
all threads through p4 

UPC example  
with dynamic allocation 

#include <upc.h> 
#include <stdio.h> 
#include <stdlib.h> 
shared [] float * shared p4[THREADS];  // shared pointer array  
                                       // to shared data 
float *p1; // private pointer to private portion of shared data 

int main(int argc, char **argv) 
{ int i, n, rank; 
  n = atoi(argv[1]) 
  p4[MYTHREAD] = (shared [] float *) upc_alloc(n * sizeof(float)); 
  p1 = (float *) p4[MYTHREAD]; 
  for (i=0; i<n; i++) { 
    p1[i] = … 
  } 
  upc_barrier; 
  if (MYTHREAD == 0) { 
    for (rank=0; rank<THREADS; rank++)  
      for (i=0; i<n; i++) { 
        printf(……, p4[rank][i]); 
      } 
    } 
  } 
  return 0; 
} 

05/19/09, Author: 
Rolf Rabenseifner 

•  Basic PGAS concepts 
Ø UPC and CAF basic syntax 

• Dynamic  
•  Advanced synchronization  

concepts  
•  Applications  

  

Each thread allocates a 
contiguous block of data 

Local & “efficient” 
access through p1 

After the barrier, 
all threads can access all locally 

stored data through p4. 
(Here an example with only 
thread 0 reading the data.)  

Each block may 
have a different 

length !!! 
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UPC example  
with shared pointers 

// same includes as on previous slide 
shared [] float * shared p4[THREADS]; // shared pointer array  
                                      // to shared data 
float *p1; // private pointer to private portion of shared data  
shared [] float *p2_neighbor; // private pointer to shared data 
int main(int argc, char **argv) 
{ int i, n, rank, next; 
  n = atoi(argv[1]) 
  p4[MYTHREAD] = (shared [] float *) upc_alloc(n * sizeof(float)); 
  p1 = (float *) p4[MYTHREAD]; 
  upc_barrier; 

  next = MYTHREAD+1 % THREADS; 
  p2_neighbor = p4[next]; 
  for (i=0; i<n; i++) { 
    p1[i] = … /* local parts */ 
    p2_neighbor[i] = … /* neighbor data */ 
  } 
  upc_barrier; 

  for (i=0; i<n; i++) { 
    printf(……, p2_neighbor[i]); 
  } 
  return 0; 
} 

05/19/09, Author: 
Rolf Rabenseifner 

•  Basic PGAS concepts 
Ø UPC and CAF basic syntax 

• Dynamic  
•  Advanced synchronization  

concepts  
•  Applications  

  

A p2-pointer can 
be used to access 

exactly one 
neighbor block 

X 
x 

A p2-pointer can 
be used to access 

exactly one 
neighbor block 
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Integration of the type system 
CAF dynamic components 

•  Derived type component 
–  with POINTER attribute, or 
–  with ALLOCATABLE attribute 

 (don‘t care a lot about the 
differences for this discussion) 

•  Definition/references 
–  avoid any scenario which 

requires remote allocation 

•  Step-by-step: 
1.  local (non-synchronizing) allo-

cation/association of component 
2.  synchronize 
3.  define / reference on remote 

image 

go to image p, look at descriptor, 
transfer (private) data 

 o[1]%p2     o[2]%p2     o[3]%p2    o[4]%p2 

X 
 
type(ctr) :: o[*] 
: 
if (this_image() == p) & 
  allocate(o%p2(sz)) 
sync all 
if (this_image() == q) & 
  o[p]%p2 = <array of size sz> 
end if 
   
 

sz same on each image? 

or  
o%p2 => var 

•  Basic PGAS concepts 
Ø UPC and CAF basic syntax 

• Dynamic  
•  Advanced synchronization  

concepts  
•  Applications  

  

remember earlier 
type definition 

10/18/09, Author: 
R. Bader 

sh
ar

ed
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Integration of the type system 
UPC pointer components 

•  Type definition 

–  must avoid undefined results 
when transferring data 
between threads 

•  Similar step-by-step: 

–  local (on thread p) allocation 
initializes pointer p2. 

–  program semantics the same as 
the CAF example on the previous 
slide 

typedef struct { 
  shared [] int *p2; 
} Ctr; 

dynamically allo- 
cated entity 
should  
be in shared 
memory area 

shared [1] Ctr o[THREADS]; 
 
int main() {  
  if (MYTHREAD == p) { 
   o[MYTHREAD].p2 = (shared int *) \ 
           upc_alloc(SZ*sizeof(int)); 
  } 
  upc_barrier; 
  if (MYTHREAD == q) { 
    for (i=0; i<SZ; i++) { 
      o[p].p2[i] = … ; 
    } 
  } 
} 

  o[0].p2       o[1].p2       o[2].p2       o[3].p2 

X 

•  Basic PGAS concepts 
Ø UPC and CAF basic syntax 

• Dynamic  
•  Advanced synchronization  

concepts  
•  Applications  

  

10/18/09, Author: 
R. Bader 
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Fortran Object Model (1) 

•  Type extension 

 
–  single inheritance (tree a DAG) 

•  Polymorphic entities 
–  new kind of dynamic storage 

–  change not only size, but also 
(dynamic) type of object during 
execution of program 

type :: body 
  real :: mass 
  : ! position, 
velocity 
end type 
 
type, extends(body) :: 
& 
      charged_body 
  real :: charge 
end type    
 
type(charged_body) :: & 
             proton 
 
 
proton%mass = … 
proton%charge = … 

inherited  

class(body), & 
     allocatable :: balloon 
 
 
allocate(body :: balloon) 
: ! send balloon on trip  
if (hit_by_lightning()) then 
  : ! save balloon data 
  deallocate(balloon) 
  allocate( & 
      charged_body :: balloon) 
  balloon = …  
  ! balloon data + charge 
end if  
: ! continue trip if possible 

typed allocation 

body 

charged_body 

etc_body 
must be an extension 

declared type 

•  Basic PGAS concepts 
Ø UPC and CAF basic syntax 

• Dynamic  
•  Advanced synchronization  

concepts  
•  Applications  

  

10/18/09, Author: 
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Fortran Object Model (2) 

•  Associate procedures with  type 

–  polymorphic dummy argument 
required for inheritance 

–  TBP can be overridden by extension 
(must specify essentially same interface, 
down to keywords) 

 

•  Run time type/class resolution 
–  make components of dynamic type 

accessible 

–  at most one block is executed 
–  use sparingly 
–  same mechanism is used (internally) 

to resolve type-bound procedure 
calls 

type :: body 
  : ! data components 
  procedure(p), pointer :: print    
contains 
  procedure :: dp 
end type 
 
subroutine dp(this, kick) 
  class(body), intent(inout) :: this 
  real, intent(in) :: kick(3) 
  : ! give body a kick 
end subroutine 

object-bound  
procedure (pointer) 

type-bound 
procedure (TBP) 

balloon%print => p_formatted 
call balloon%print() 
call balloon%dp(mykick) balloon  

matches this 

select type (balloon) 
  type is (body) 
    : ! balloon non-polymorphic here 
  class is (rotating_body) 
    : ! declared type lifted 
  class default 
    : ! implementation incomplete? 
end select  

polymorphic 
entity 

•  Basic PGAS concepts 
Ø UPC and CAF basic syntax 

• Dynamic  
•  Advanced synchronization  

concepts  
•  Applications  
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Object orientation and Parallelism (1) 

•  Run time type resolution 

–  allocation must guarantee 
same dynamic type on each 
image 

•  Using procedures 

–  procedure pointers may point 
to a different target on each 
image 

–  type-bound procedure is 
guaranteed to be the same 

call asteroids%dp(kick)      ! Fine 
call asteroids%print()       ! Fine 
if (this_image() == 1) then 
   select type(asteroids) 
     type is (rotating_body) 
     call asteroids[2]%print()  ! NO 
     call asteroids[2]%dp(kick) ! OK 
   end select 
end if 

class(body), & 
       allocatable :: asteroids[:] 
 
allocate( rotating_body :: & 
                      asteroids[*] ) 
! synchronizes 
if (this_image == 1) then 
  select type(asteroids)        
    type is (rotating body) 
    asteroids[2] = … 
  end select 
end if  

required for 
coindexed access 

non-polymorphic 

•  Basic PGAS concepts 
Ø UPC and CAF basic syntax 

• Dynamic  
•  Advanced synchronization  

concepts  
•  Applications  
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Object orientation and Parallelism (2) 

•  Coarray type components 

•  Usage: 

–  entity must be: 
 (1) non-allocatable, non-pointer  
 (2) a scalar 
 (3) not a coarray (because       
   par_vec%a already is) 

•  Type extension 
–  defining a coarray type component 

in an extension is allowed, but 
parent type also must have a 
coarray component 

•  Restrictions on assignment 
–  intrinsic assignment to polymorphic 

coarrays (or coindexed entities) is 
prohibited 

type parallel_stuff 
  real, allocatable :: a(:)[:] 
  integer :: i 
end type 

must be  
allocatable 

type(parallel_stuff) :: par_vec 
 
allocate(par_vec%a(n)[*]) 

symmetric 

•  Basic PGAS concepts 
Ø UPC and CAF basic syntax 

• Dynamic  
•  Advanced synchronization  

concepts  
•  Applications  
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R. Bader 



80 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others 

Major Differences  
between UPC and CAF 

•  CAF 
–  declaration of shared entity requires additional codimension 

(“fragmented data view”). 
–  Codimensions are very flexible (multi-dimensional). 

•  UPC 
–  No codimensions (“global data view”). 
–  PGAS-arrays are distributed and the array indices are mapped to 

threads. 
–  Block-wise distribution hard to handle  

§  Last index  x[……][THREADS] implies round robin distribution 
§  possibility of asymmetric distribution 

–  Multiple variants of dynamic allocation 

17/05/10, Author: 
Rolf Rabenseifner 

•  Basic PGAS concepts 
Ø UPC and CAF basic syntax 

• Dynamic  
•  Advanced synchronization  

concepts  
•  Applications  

  



81 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others 

Second Exercise: 
Handling a triangular matrix (1) 

•  Consider a triangular matrix 

–  suggested data structure 

•  Procedure: 
–  make copy of ../

triangular_matrix/triangular.f90 
or ../triangular_matrix/triangular.c 
to your working directory 

–  the program reads in matrix size 
and a row index from the 
command line, it then sets up 
A(i,j) = i+j and prints out the 
specified row 

–  parallelize this program in a 
manner that distributes data 
evenly across tasks 

–  note that accesses to A can be 
kept purely local for this problem 
(which remote accesses will be 
needed?) 

•  Basic PGAS concepts 
Ø UPC and CAF basic syntax 

• Exercises 
•  Advanced synchronization  

concepts  
•  Applications  

  

A(i,j)         i=1..n, j=1..n-i+1 

type :: tri_matrix 
  real, allocatable :: row(:) 
end type 

typedef struct { 
  float *row; 
  size_t row_len; 
} Tri_matrix; 

Fortran 

C 

typically n >> number of tasks 
i 

j 

triangular 

10/18/09, Author: 
R. Bader 
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Handling a triangular matrix (2) 

•  Example program run: •  Suggestions: 
–  observe how location of row 

changes with number of image 
and row index 

–  add the element count output as 
illustrated to the left 

•  Basic PGAS concepts 
Ø UPC and CAF basic syntax 

• Exercises 
•  Advanced synchronization  

concepts  
•  Applications  

  

aprun –n 3 ./triang.exe 23 20 
 Row 20 on image 2: 21.0 22.0 23.0 24.0 
Number of elements on image 2: 92 
Number of elements on image 1: 100 
Number of elements on image 3: 84 
 

10/18/09, Author: 
R. Bader 

CAF:  aserial(i)  =  aCAF( i / nprocs ) [mod(i, nprocs)]  i = 1,…,n 
 aserial(me + (i_local-1)*nprocs)  =  aCAF(i_local)[me]  i_local = 1,…,rows_per_proc 
  me = 1,…,nprocs  

UPC simple:  Aserial[i]  =  AUPC[i]     
more general:  Aserial[i]  =  AUPC[i%THREADS ] [i/THREADS]  i = 0,…,n-1 

  Aserial[MYTHREAD + i_local*THREADS] =  AUPC[MYTHREAD] [ i_local] 
   i_local = 0,…,rows_per_thread-1 
   MYTHREAD = 0,…,THREADS-1  

 
 
 
 
 

•  Alternative exercise: 
–  each thread or image should print the specified row 
–  for this alternative, start from the solution program 

§  triangular_matrix/solutions/triangular.f90 (Fortran) 
§  triangular_matrix/solutions/triangular.upc (UPC) 

Solution program for  
alternative  exercise: 

triangular_printall.[upc|f90] 

solutions/triangular_simple.upc 

solutions/triangular_cyclic.upc 

#rows 

row to print 
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Advanced Synchronization  
Concepts  

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
Ø Advanced synchronization  

concepts  
•  Applications  

  

https://fs.hlrs.de/projects/rabenseifner/publ/SC2012-PGAS.html 

o  Partial synchronization 
-  mutual exclusion 
-  split-phase barrier 

o  Collective operations  
o  Some parallel patterns and hints on library design:  

-  parallelization concepts with and without halo cells  
-  work sharing; distributed structures 
-  procedure interfaces  

o  Hands-on session  
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Each grey box: 
represents one  
sync images  

statement 

Partial synchronization 

•  Image subsets 
–  sometimes, it is sufficient to 

synchronize only a few 
images 

 
–  CAF supports this: 

 executing image implicitly 
included in image set 

–  UPC does not explicitly support 
this; note that in  

 exp only serves as a label, with 
the same value on each thread 

•  More than 2 images: 
–  need not have same image 

set on each image 
–  but: eventually all image 

pairs must be resolved, else 
deadlock occurs if (this_image() < 3) then 

  sync images ( (/ 1, 2 /) ) 
end if 

execution sequence 

upc_barrier exp; 

(/ 2 /) (/ 3 /) 

(/ 3 /) (/ 1 /) 

(/ 1 /) (/ 2 /) 

1 
2 
3 

1 
2 
3 
4 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
Ø Advanced synchronization  

concepts  
•  Applications  

  

10/18/09, Author: 
R. Bader 

(/ 1 /) 

deadlock 

OK 
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Example: Simple Master-Worker 

•  Scenario: 
–  one image sets up data for 

computations 
–  others do computations 

–  difference between          
SYNC IMAGES (*) and 
SYNC ALL: no need to 
execute from all images 

•  Performance notes: 
–  sending of data by image 1 

–  „push“ mode à a high 
quality implementation may 
implement non-blocking 
transfers 

–  defer synchronization to 
image control statement 

if (this_image() == 1) then 
  : ! send data 

  sync images ( * ) 
else 
  sync images ( 1 )  
  : ! use data 
end if 

images 2 etc. 
don‘t mind 
stragglers 

  do i=2, num_images() 
    a(:)[i] = … 
  end do  

„all images“ 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
Ø Advanced synchronization  

concepts  
•  Applications  

  

10/18/09, Author: 
R. Bader 
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Partial synchronization: 
Best Practices 

•  Localize complete set of synchronization statements 
–  avoid interleaved subroutine calls which do synchronization of their 

own 

–  a very bad idea if subprogram does the following 

–  may produce wrong results even if no deadlock occurs 

if (this_image() == 1) sync images (/ 2 /) 
call mysub(…) 
: 
if (this_image() == 2) sync images (/ 1 /) 

subroutine mysub(…) 
  : 
  if (this_image() == 2) sync images (/ 1 /) 
  : 
end subroutine 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
Ø Advanced synchronization  

concepts  
•  Applications  

  

10/18/09, Author: 
R. Bader 
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Mutual Exclusion (simplest case) 

•  Critical region 
–  In CAF only 
–  block of code only executed 

by one image at a time 

–  in arbitrary order 

–  can have a name, but has no 
semantics associated with it 

•  Subsequently executing 
images: 

–  segments corresponding to 
the code block ordered 
against one another 

–  this does not apply to 
preceding or subsequent 
code blocks  

à  may need additional 
synchronization to protect 
against race conditions 

•  UPC:  
-  use locks (see following 

slides) 

execution sequence 

critical 
  : ! statements in region 
end critical 

e.g., update X[1] 1 
2 
3 
4 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
Ø Advanced synchronization  

concepts  
•  Applications  

  

10/18/09, Author: 
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Memory fence 

•  Goal: allow implementation of user-defined synchronization 
•  Prerequisite: subdivide a segment into two segments 

–  ensure memory operations are observed in-order 

•  Assurance given by memory fence: 
–  operations on x[Q] and y[Q] via statements on P 
–  action on x[Q] precedes action on y[Q] à code movement by compiler prohibited 
–  P is subdivided into two segments / access epochs 
–  but: segment on Q is unordered with respect to both segments on P 

image / thread P 

image / thread Q 
memory fence 

CAF: 
sync memory 

UPC: „null strict access“ 
upc_fence; 

x[Q] y[Q] 
Note:  
A memory fence is 
implied by most 
other synchroni-
zation statements 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
Ø Advanced synchronization  

concepts  
•  Applications  

  

10/18/09, Author: 
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Atomic subroutines and atomic types 

•  CAF: 

–  ATOM: is a scalar coarray or co-
indexed object of type 
logical(atomic_logical_kind) 
or 
 integer(atomic_int_kind) 

–  VALUE: is of same type as ATOM 

•  Berkeley UPC extension:  

–  shared int64_t *ptr; 
–  int64_t value; 
–  unsigned and 32 bit integer types 

also available 
–  „_relaxed“ indicates relaxed 

memory model 
–  „_strict“ model also available 

Remember synchronization rule for relaxed memory model: 
A shared entity may not be modified and read from two different threads/images  
in unordered access epochs/segments 
Atomic subroutines allow a limited exception to this rule 

call ATOMIC_DEFINE(ATOM, VALUE) 
call ATOMIC_REF(VALUE, ATOM)  

Semantics: 
•   ATOM/ptr always has a well-defined value if only the above subroutines are used 
•   for multiple updates (=definitions) on the same ATOM, no assurance is given about the 

 order which is observed for references à programmers‘ responsibility 

bupc_atomicI64_set_relaxed(ptr, value); 
value = bupc_atomicI64_read_relaxed(ptr);  

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
Ø Advanced synchronization  

concepts  
•  Applications  

  

10/18/09, Author: 
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Example: Producer/Consumer 

•  CAF: 

 
–  memory fence: prevents reordering 

of statements (A), enforces memory 
loads (for coarrays, B) 

–  atomic calls: ensure that B is exe-
cuted after A 

•  BUPC: 

 
•  further atomic functions: 

–  swap, compare-and-swap, (fetch-and-) 
add, (fetch-and-)<logical-operation> 

–  Will also be supported in future UPC 1.3 
(with different syntax) and Coarray TS 

logical(ATOMIC_LOGICAL_KIND), save :: & 
        ready[*] = .false. 
logical :: val 
 
me = THIS_IMAGE() 
if (me == p) then   
  : ! produce 
  sync memory    ! A      
  call ATOMIC_DEFINE(ready[q], .true.) 
else if (me == q) 
  val = .false. 
  do while (.not. val)   
    call ATOMIC_REF(val, ready) 
  end do 
  sync memory    ! B    
  : ! consume 
end if 

segment Pi ends 

segment Qj starts 

shared [] int32_t ready = 0;  
int32_t val; 
 
me = MYTHREAD; 
if (me == p) {   
  : // produce 
  upc_fence;     ! A      
  bupc_atomicI32_set_relaxed(&ready, 1); 
} else if (me == q) { 
  val = 0; 
  while (! val) {   
    val = \ 
    bupc_atomicI32_read_relaxed(&ready);  
  } 
  upc_fence;     ! B    
  : // consume 
} 

roll-your-own 
partial synchronization 

sync images ( (/ p, q /) ) 
would do the job as well 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
Ø Advanced synchronization  

concepts  
•  Applications  
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Recommendation 

•  Functionality from the last three slides  
–  should be used only in exceptional situations 
–  can be easily used in an unportable way (works on one system, fails 

on another) à beware 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
Ø Advanced synchronization  

concepts  
•  Applications  
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Locks – a more general 
mechanism for mutual exclusion  

•  Coordinate access to shared ( = sensitive) data 
–  sensitive data represented as “red balls”  

•  Use a coarray/shared lock variable 
–  modifications are guaranteed to be atomic 
–  consistency across images/threads 

•  Problems with CAF critical region: 
–  lack of scalability if multiple entities are protected 
–  updates to same entity in different parts of program  

  

blocking 

non-blocking 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
Ø Advanced synchronization  

concepts  
•  Applications  

  

10/18/09, Author: 
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Usage of locks (1) – blocking 

•  CAF: 
–  coarray lock variable 

–    
–    
–    

 
–  as many locks as there are 

images, but typically only one is 
used 

–  lock/unlock: no memory fence, 
only one-way segment ordering 

•  UPC: 
–  single pointer lock variable 

 

 

–  lock/unlock imply memory 
fence 

use, intrinsic :: iso_fortran_env 
 
type(lock_type) :: lock[*] 
! default initialized  
! to unlocked 
 
lock(lock[1]) 
: !  play with red balls 
unlock(lock[1]) 

like critical, but 
more flexible 

#include <upc.h> 
 
upc_lock_t *lock; // local pointer  
                  // to shared entity 
 
lock = upc_all_lock_alloc(); 
 
upc_lock(lock); 
: // play with red balls 
upc_unlock(lock); 
upc_barrier; // prevent race vs. free 
// single free from arbitrary thread 
if (MYTHREADS == THREADS-1)      
   upc_lock_free(lock);  

collective call 
same result on 

each thread 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
Ø Advanced synchronization  

concepts  
•  Applications  

  

10/18/09, Author: 
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Usage of locks (2) – nonblocking 

•  CAF: 

 

•  UPC: 

 

–  thread-individual lock generation is 
also possible (non-collective) 

–  FUTURE: UPC 1.3 will include 
upc_all_lock_free() (with implicit barrier) 

use, intrinsic :: iso_fortran_env 
 
type(lock_type) :: lock[*] 
logical :: got_it 
do  
  lock(lock[2], & 
       acquired_lock=got_it) 
  if (got_it) exit 
  : ! go climb that mountain 
end do 
: ! play with other red balls 
unlock(lock[2]) 

#include <upc.h> 
 
upc_lock_t *lock; // local pointer  
                  // to shared entity 
 
lock = upc_all_lock_alloc(); 
for (;;) { 
  if (upc_lock_attempt(lock)) break; 
  : // go climb that mountain 
} 
: // play with red balls 
upc_unlock(lock); 
upc_barrier; // prevent race vs. free 
// single free from arbitrary thread 
if (MYTHREADS == THREADS-1)      
   upc_lock_free(lock);  

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
Ø Advanced synchronization  

concepts  
•  Applications  

  

10/18/09, Author: 
R. Bader 

Upd. Sep 2012 
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UPC: Split-phase barrier 

•  Separate barrier completion point from waiting point 
–  this allows threads to continue computations after reaching the 

completion point à may reduce impact of load imbalance 

 
–  completion of upc_wait once all threads reach upc_notify  
–  collective – all threads must execute both calls in same order 

•  CAF: 
–  presently does not have this facility in statement form 
–  FUTURE: Notify/Query with events (non-collective though) 

execution sequence 

completion point waiting point 

for (…) a[n][i]= …; 
upc_notify; 
// do work (on b?) not 
// involving a 
upc_wait; 
for (…) b[i]=b[i]+a[q][i]; 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
Ø Advanced synchronization  

concepts  
•  Applications  

  

10/18/09, Author: 
R. Bader 
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UPC:  Memory consistency modes 

•  How are shared entities accessed? 
–  relaxed mode à program assumes no concurrent accesses from different threads 
–  strict mode à program ensures that accesses from different threads are separated, 

and prevents code movement across these synchronization points 
–  relaxed is default; strict may have large performance penalty 

•  Options for synchronization mode selection 
–  variable level: 

 (at declaration 
       or in a cast) 

 

–  code section level: 
 

 

 
strict shared int flag = 0; 
relaxed shared [*] int c[THREADS][3]; 

 
c[q][i] = …; 
flag = 1; 

while (!flag) {…}; 
… = c[q][j]; Th

re
ad

 q
 

Th
re

ad
 p

 
{ // start of block 
  #pragma upc strict 
  … // block statements 
} 
// return to default mode 

 
-  program level 
#include <upc_strict.h> 
// or upc_relaxed.h 

consistency mode on variable declaration overrides 
code section or program level specification 

q has same 
value  on 
thread p as  
on thread q 

example for  
a spin lock 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
Ø Advanced synchronization  

concepts  
•  Applications  

and outlook  

10/18/09, Author: 
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What strict memory consistency 
does and doesn‘t do for you 

•  „strict“ cannot prevent all race conditions 
–  example: „ABA“ race 

•  „strict“ does not make a[i]+=j atomic (read/modify/write) 
•  „strict“ does assure that changes on (complex) objects appear in 

the same order on other threads 

strict shared int flag; 
int val, val1, val2; 

flag = 0; 
upc_barrier; 
flag = 1; 
flag = 0; 

thread 0 

upc_barrier; 
val = flag; 

thread 1 

may end up  
with 0 or 1  

flag = 0; 
upc_barrier; 
flag = 1; 
flag = 2; 

 
upc_barrier; 
val1 = flag; 
val2 = flag; 

may obtain (val1 <= val2) 
but not (val1 > val2) e.g., 

(2, 1) or (2,0) are not 
possible 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
Ø Advanced synchronization  

concepts  
•  Applications  

  

10/18/09, Author: 
R. Bader 

thread 0 thread 1 
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Advanced Synchronization  
Concepts  

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
Ø Advanced synchronization  

concepts  
•  Applications  

  

https://fs.hlrs.de/projects/rabenseifner/publ/SC2012-PGAS.html 

o  Partial synchronization 
-  mutual exclusion 
-  split-phase barrier 

o  Collective operations  
o  Some parallel patterns and hints on library design:  

-  parallelization concepts with and without halo cells  
-  work sharing; distributed structures 
-  procedure interfaces  

o  Hands-on session  



99 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others 

Collective functions (1) 

•  Two types: 
–  data redistribution (e.g., scatter, 

gather) 
–  computation operations (reduce, 

prefix, sort) 

•  Separate include file: 

•  Synchronization mode: 
–  constants of type upc_flag_t 

 

•  IN/OUT: 
–  refers to whether the specified 

synchronization applies at the entry or 
exit to the call 

•  Synchronization: 
–  NOSYNC – threads do not synchronize 

at entry or exit 
–  MYSYNC – start processing of data 

only if owning threads have entered 
the call / exit function call only if all 
local read/writes complete 

–  ALLSYNC – synchronize all threads at 
entry / exit to function 

•  Combining modes: 
–  UPC_IN_NOSYNC | UPC_OUT_MYSYNC 

–  UPC_IN_NOSYNC   same as 
UPC_IN_NOSYNC | UPC_OUT_ALLSYNC 

–  0 same as   
 UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC 

             NOSYNC 
UPC_      _  MYSYNC 
             ALLSYNC 

IN 

OUT 

#include <upc_collective.h> 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
Ø Advanced synchronization  

concepts  
•  Applications  

  

10/18/09, Author: 
R. Bader 
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Collectives (2): Example for 
redistribution 

•  UPC Allscatter 

 
 

–  src has affinity to a single 
thread 

–  i-th block of size nbytes is 
copied to src with affinity to 
thread i 

•  CAF:  
–  already supported by combined 

array and coarray syntax 
–  „push“ variant: 

 
–  „pull“ variant: 

 simpler, but no asynchronous 
execution possible 

void upc_all_scatter ( 
     shared void *dst,  
     shared const void *src, 
     size_t nbytes,  
     upc_flag_t sync_mode); if (this_image() == 2) then 

  do i = 1, num_images 
    b(1:sz)[i] = & 
      a((i-1)*sz+1:i*sz) 
  end do 
end if 
sync all 

me = this_image() 
b(1:sz) = & 
  a((me-1)*sz+1:me*sz)[2] 

can be a 
non-coarray 

al
ls

ca
tte

r 

execution sequence 

0 
 
1 
 
2 
 
3 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
Ø Advanced synchronization  

concepts  
•  Applications  

  

10/18/09, Author: 
R. Bader 
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Collectives (3): Reductions 

•  Reduction concept: 
–  distributed set of objects 
–  operation defined on type 

 
–  destination object resides 

in shared space 
•  Availability: 

–  UPC only 
–  CAF Future: TS will include 

some collectives 

•  Reduction type codes 

•  Operations: 

 
–  are constants of type 

upc_op_t 

+

al
lre

du
ce

 
C/UC – signed/unsigned char L/UL – signed/unsigned long 

S/US – signed/unsigned short F/D/LD – float/double/long double 

I/UI – signed/unsigned int 

Numeric Logical User-defined function 

UPC_ADD UPC_AND UPC_FUNC 

UPC_MULT UPC_OR UPC_NONCOMM_FUNC 

UPC_MAX UPC_XOR 

UPC_MIN UPC_LOGAND 

UPC_LOGOR 

execution sequence 

0 
 
1 
 
2 
 
3 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
Ø Advanced synchronization  

concepts  
•  Applications  

  

10/18/09, Author: 
R. Bader 
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Collectives (4): Reduction prototype 

 

•  src and dst may not be aliased 
•  replace T by type (C, UC, etc.) 
•  function argument will be NULL 

unless user-defined function is 
configured via op 

void upc_all_reduceT( 
 
  shared void *restrict dst, 
 
  shared const void *restrict src,     
 
  upc_op_t op, 
 
  size_t nelems, 
 
  size_t blk_size, 
 
  T(*func)(T, T), 
 
  upc_flag_t flags); 

destination and source, respectively 

number of elements of type T 

source pointer block size,  
or 0 for indefinite 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
Ø Advanced synchronization  

concepts  
•  Applications  

  

10/18/09, Author: 
R. Bader 
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•  Prefix reductions 
–  upc_all_prefix_reduceT() 
–  semantics: 

 for UPC_ADD,  
 thread i gets 
 (thread-dependent result) 

Collectives (5): further functions 

•  Redistribution functions 
–  upc_all_broadcast() 
–  upc_all_gather_all() 
–  upc_all_gather() 
–  upc_all_exchange() 
–  upc_all_permute() 

 à consult the UPC language 
specification for details 

+

al
l_

pr
ef

ix
_r

ed
uc

e 

execution sequence 

0 
 
1 
 
2 
 
3 

+

∑
=

i

k
ksrc

0
][

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
Ø Advanced synchronization  

concepts  
•  Applications  

  

10/18/09, Author: 
R. Bader 



104 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others 

Advanced Synchronization  
Concepts  

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
Ø Advanced synchronization  

concepts  
•  Applications  

  

https://fs.hlrs.de/projects/rabenseifner/publ/SC2012-PGAS.html 

o  Partial synchronization 
-  mutual exclusion 
-  split-phase barrier 

o  Collective operations  
o  Some parallel patterns and hints on library design:  

-  parallelization concepts with and without halo cells  
-  work sharing; distributed structures 
-  procedure interfaces  

o  Hands-on session  
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Work sharing (3) 
data exchange 

•  Halo data (MPI like) 
–  context: stencil evaluation 
–  example: Laplacian 

 (halo size is 1) 
–  data exchange (blue 

arrows) required e.g. for 
iterative updates 

•  CAF halo update 

–  uses „pull“ style („push“ also 
possible) 

–  1-d data distribution: not the 
most efficient way 

global index          
(1 … md)                m m+1       m  m+1  

thread/ 
image me 

thread/ 
image me+1 

local index      n-1  n           1    2 
(CAF) 

md 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
Ø Parallel Patterns and  

Practices 
•  Applications  

  

10/18/09, Author: 
R. Bader 

corrected for SC11 

real(dp),allocatable :: a_new(:,:)[*] 
integer :: me, n, md 
me = this_image() 
: ! determine n, md 
allocate(a_new(md, n)[*]) 
: ! initialize a  
: ! calculate stencil a_new 
sync all 
if (me > 1) & 
     a(:,1) = a_new(:,n-1)[me-1] 
if (me < num_images()) & 
     a(:,n) = a_new(:,2)[me+1] 
sync all 
: ! calculate next iteration 

Assure stencil is done 

Protect against subsequent write 
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Work sharing (4) 
Avoiding the use of halo cells 

•  Coarray Fortran 
–  interior region stencil is  

processed by local accesses 
–  boundary region is treated 

separately, with remote accesses 

 

•  UPC 
–  can execute complete stencil 

update on shared array 
–  easy to write, but may lose 

performance  
–  cast to local pointer (for 

performance tuning) can only 
be done for interior region, 
then need to process 
boundary region separately 
with cross-thread accesses 

: ! calculate interior a_new   
sync all 
! left neighbour image: 
if (me > 1) a_new(2:n-1,1) = (& 
  a(1:n-2,1) + a(3:n,1) + & 
  a(2:n-1,2) + a(2:n-1,n)[me-1] & 
  - 4 * a(2:n-1,1)) / (4.0_dk * dx) 
! right neighbour image:  
: ! (analogous procedure) 
sync all 
: ! copy a_new to a 
: ! calculate next iteration 

12/08/09, Author: 
R. Bader 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
Ø Parallel Patterns and  

Practices 
•  Applications  

  

•  Easier to design (no halo data) 
•  But numerics replicated in 

communication part of code 
•  and compiler optimization and/or 

architecture support is required 
à see „Programming Styles with PGAS“ 
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Subprogram interface 

•  CAF coarray argument 

–  corank specification is always 
assumed size 

–  restrictions to prevent copy-in/
out of coarray data: 
 actual argument must be a 
coarray 
 if dummy is not assumed-shape, 
actual must be contiguous 
 VALUE attribute prohibited for 
dummy argument 

•  UPC shared argument 

–  subr assumes local size is n 
–  cast to local pointer for safety of use 

and performance if only local 
accesses are required 

–  declarations with fixed block size > 1 
also possible (default is 1, as usual) 

subroutine subr(n,w,x,y) 
  integer :: n 
  real :: w(n)[n,*] ! Explicit shape 
  real :: x(n,*)[*] ! Assumed size 
  real :: y(:,:)[*] ! Assumed shape 
  :  
end subroutine 

void subr(int n,  
          shared float *w) { 
  int i; 
  float *wloc; 
  wloc = (float *) &w[MYTHREAD]; 
  for (i=0; i<n; i++){ 
     … = wloc[i] + … 
  }  
  upc_barrier; 
  // exchange data 
  upc_barrier; 
  // etc. 
} 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
Ø Parallel Patterns and  

Practices 
•  Applications  

  

10/18/09, Author: 
R. Bader 
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Using the interface 

•  CAF 

–  a: corank mismatch is 
allowed (remapping inside 
subroutine) 

–  c: assumed shape entity 
may be discontiguous  

•  UPC 

 
–  cast to cyclic to match the prototype 
–  this approach of passing cyclic pointer 

and blocksize as arguments is a common 
solution to UPC library design. 

–  cyclic is “good enough” in most cases 
because function can recover actual 
layout via pointer arithmetic 

–  in this example w[i] aliases x[i][0] 

shared [*] float x[THREADS][NDIM] 
int main(void) { 
  : // initialize x 
  upc_barrier; 
  subr(NDIM, (shared float *) x); 
}  

real :: a(ndim)[*], b(ndim,2)[*] 
real, allocatable :: c(:,:,:)[:] 
allocate(c(10,20,30)[*]) 
 
call subr(ndim, a, b, c(1,:,:)) 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
Ø Parallel Patterns and  

Practices 
•  Applications  

  

10/18/09, Author: 
R. Bader 

x[0][0] 
x[0][1] 

⁞ 
Thread 0 Thread 1 Thread 2 Thread 3 

x[1][0] 
x[1][1] 

⁞ 

x[2][0] 
x[2][1] 

⁞ 

x[3][0] 
x[3][1] 

⁞ 

w[0] w[1] w[2] w[3] 
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Factory procedures 

•  CAF:  
 allocatable dummy argument 

 
 
 

  
 

–  actual argument: must be 
allocatable, with matching type, 
rank and corank 

–  procedure must be executed 
with all images  

•  UPC:  
 shared pointer function result 

 
 
 
 
 
 

–  analogous functionality as for CAF is 
illustrated  

–  remember: other allocation functions 
upc_global_alloc (single thread 
distributed entity), upc_alloc 
(single thread shared entity) do not 
synchronize 

subroutine factory(wk, …) 
  real, allocatable :: wk(:)[:] 
  : ! determine size n 
  allocate(wk(n)[*]) 
  : ! fill wk with data 
end subroutine 

synchronizes  
all images 

shared *float factory(…) { 
  shared float *wk; 
  // determine size n to allocate 
  wk = (shared float *) 
    upc_all_alloc(THREADS, 
                  sizeof(float)*n);  
  : // fill wk with data 
  return wk; 
} 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
Ø Parallel Patterns and  

Practices 
•  Applications  

  

10/18/09, Author: 
R. Bader 
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CAF: subprogram-local coarrays 

•  Restrictions: 
–  no automatic coarrays 
–  function result cannot be a coarray 

 (avoid implicit SYNC ALL) 

•  Consequence: 
–  require either the SAVE attribute 

 allow e.g., invocation by image 
subsets: 

  

–  or the ALLOCATABLE attribute: 

 requires execution by all images  
 allows recursive invocation, as 
shown in example (distinct 
entities are created) 

–  can also combine 
ALLOCATABLE with SAVE à  
a single entity, no automatic 
deallocation on return 

subroutine foo(a) 
  real :: a(:)[*] 
  real, SAVE :: wk_loc(ndim)[*] 
  : ! work with wk_loc 
end subroutine 

storage preserved 
throughout execution 

if (this_image() < num) then 
  call foo(x) 
else 
  call bar(x) 
end if 

recursive subroutine rec_process(a) 
  real :: a(:) 
  real, ALLOCATABLE :: wk_loc(:)[:] 
  
  allocate(wk_loc(n)[*]) 
  : 
  if (.not. done) & 
     call rec_process(…) 
end subroutine 

may have coindexed 
accesses to x in 
both foo and bar 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
Ø Parallel Patterns and  

Practices 
•  Applications  

  

10/18/09, Author: 
R. Bader 
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CAF: Coindexed entities as 
actual arguments 

•  Assumptions:  
–  dummy argument is not a coarray  
–  it is modified inside the subprogram 
–  therefore, typically copy-in/out will be required 
 

à  an additional synchronization rule  
  is needed 

 
 
•  Note: 

–  UPC does not allow  
 casting a remote shared  
 entity to a private one 

execution sequence 

p 

a q 

r 
a[q] = … 

fo
o 

co
m

pl
et

ed
 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
Ø Parallel Patterns and  

Practices 
•  Applications  

  

10/18/09, Author: 
R. Bader 
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Distributed structures (1) 

•  Irregular data structures 
–  example: binary tree 
–  serial type definition: 

 
–  each node contains: 

§  data 
§  information about 

siblings if present 

•  Prerequisite 
–  ordering relation 

•  API: 
–  constructor and destructor 
–  insertion routine 
 

–  traversal (performs operations 
on all tree data) 

–  insertion and traversal work 
recursively 

typedef struct tree { 
  struct tree *left; 
  struct tree *right; 
  Content *data;  
}; 
typedef struct tree Tree; 

int lessthan(Content *a, Content *b); 

void insert(Tree *this, \ 
            Content *stuff); 

void traverse(Tree *this, \ 
              Params *op); 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
Ø Parallel Patterns and  

Practices 
•  Applications  
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Distributed Structures (2) 

•  Aim:  
–  concurrent processing of 

distributed binary tree  
•  Type definition 

 

–  add a lock component 

–  need to do remote copies for 
first argument 

•  Constructor for Tree object 
–  to be called by one thread 

 

 
–  initialize shared storage for lock 

and data components, NULL for 
children  

–  malloc() of serial code is 
replaced by upc_alloc() 

typedef struct tree { 
  upc_lock_t *lk; 
  shared struct tree *left; 
  shared struct tree *right; 
  shared Content *data;  
}; 
 
typedef struct tree Tree; 

shared Tree *Tree_init() { 
  shared Tree *this; 
  this = (shared Tree *)  
          upc_alloc(sizeof(Tree)); 
  this->lk = upc_global_lock_alloc(); 
  this->data = (shared Content *) 
          upc_alloc(sizeof(Content)); 
  this->left = this->right = NULL; 
  return this; 
} 

use regular „serial“ 
type definition 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
Ø Parallel Patterns and  

Practices 
•  Applications  

  

int lessthan(shared Content *a, 
                    Content *b); 
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UPC: One-sided memory block transfer 

•  Available for efficiency 
–  operate in units of bytes 
–  use restricted pointer 

arguments 
•  Note:  

–  CAF array transfers 
should do this by default 

      src                  dst 

src dst 

thread p          thread q upc_memcpy() (any thread) 

upc_memget() (on q) 

upc_memput() (on p) 

(char) int 

upc_memset()  
shared 

private 

void upc_memcpy(shared void *dst,  
    shared const void *src, size_t n); 
void upc_memget(void *dst, 
    shared const void *src, size_t n); 
void upc_memput(shared void *dst, 
    void *src, size_t n); 
void upc_memset(shared void *dst,  
    int c, size_t n);   

prototypes from upc.h 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
Ø Parallel Patterns and  

Practices 
•  Applications  

  

10/18/09, Author: 
R. Bader 
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Distributed Structures (3) 
•  Concurrent population 

–  locking ensures race-free processing 

–  Invariant to simplify code (at the expense of storage): a node has EITHER 
§  2 children and „data“ field is used, OR 
§  0 children and „data“ points to allocated, but uninitialized, memory   

void insert(shared Tree *this, Content *stuff) { 
  upc_lock(this->lk); 
  if ( this->left ) { // Interior node (contains data) 
    upc_unlock(this->lk); 
    if ( lessthan(this->data, stuff) ) { 
      insert(this->left, stuff); 
    } else { 
      insert(this->right, stuff); 
    } 
  } else { // leaf node (no data value yet) 
    this->left =  Tree_init(); 
    this->right = Tree_init(); 
    upc_memput(this->data, stuff, sizeof(Content)); 
    upc_unlock(this->lk); 
  }   
} 

copy object to 
(remote) shared entity 

invoke  
constructor 

color ↔ thread number 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
Ø Parallel Patterns and  

Practices 
•  Applications  
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Distributed Structures (4) 

•  Assumption 
–  structure is written once or rarely 

(locking is expensive) 
–  many operations performed on 

entries, in access epochs 
separated from insert() calls 

" to be complete, traverse() 
must be executed by all threads 
which called insert(), but not 
necessarily collectively 

•  CAF: 
–  cannot easily implement this 

concept with coarrays 
–  shared objects on one image 

only not supported 
–  klugey workaround using 

pointer components of coarrays 
may be possible 

•  Generalization 
–  implement e.g., tasking concept 

in UPC 

void traverse(shared Tree *this,  
              Params *op) { 
if (this->data) { // non-empty node 
   if (upc_threadof(this->data)  
                    == MYTHREAD) {  
     process((Content *)this->data, op); 
   } 
    traverse(this->left, op); 
    traverse(this->right, op); 
  } 
} 

guarantees 
locality 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
Ø Parallel Patterns and  

Practices 
•  Applications  
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Third exercise:  
Manual reduction and prefix reduction 

•  This exercise is required for Fortran programmers 
–  UPC programmers could also make use of library function 

•  Implement a global reduction facility for extended precision 
floating point numbers 

–  suggested interface: 

 
•  Try the simplest implementation 

–  where do coarrays appear? 
•  What do you need to change if you want to calculate a prefix 

reduction (caf_prefix_reduce(), same interface) instead? 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
Ø Advanced synchronization  

concepts 
• Exercises  

•  Applications  
  

real (dk) function caf_reduce(x, ufun) 
  real(dk) intent(in) :: x 
  interface 
    real(dk) function ufun(a, b) 
      real(dk), intent(in) :: a, b 
    end function 
  end interface 
end function 
    

user-provided 
function 

not a coarray 

Reduction 
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Fourth Exercise: 
Heat conduction in 2 dimensions 

•  Make a copy of serial programs into your working directory 
–  cp  ../reduction_heat/heat_serial.c      heat_upc.c 
–  cp  ../reduction/heat/heat_serial.f90   heat_caf.f90 

•  Work items for parallelization: 
–  domain (data) decomposition (suggestion: use a 1-D decomposition 

for simplicity) 
–  decide on shared data including halo, or local data with separate 

shared 1-D arrays for halo exchange (UPC only: use memory block 
transfer functions) 

–  need a reduction operation to determine global convergence (use 
the code from the previous exercise) 

–  halo exchange 
–  organization of debug printout routine  

05/19/09, Author: 
Rolf Rabenseifner 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
Ø Advanced synchronization  

concepts 
• Exercises 

•  Applications   
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Applications, Optimization, and 
Hybrid Programming 

05/19/09, Author: 
Rolf Rabenseifner 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
Ø Applications, Optimization.. 

o  Tools for Data Race Detection 
o  NAS parallel benchmarks 

-  Optimization strategies in UPC 
-  Hybrid concepts for optimization 

o  Hybrid programming  
-  MPI allowances for hybrid models  
-  Hybrid PGAS examples and performance/implementation comparison 

o  Hands-on session: optimization 
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UPC / Thrille 
A Tool for Data Race Detection 

•  Observes shared memory accesses and synchronization behavior 
•  Can detect potential concurrency bugs in UPC programs 
•  Can actively control the schedule of threads to reproduce/fix bugs 

•  Run Thrille by adding -thrille=racer as a compiler option 
•  Potential races are reported in separate upct.race<num> files 

•  Compile with -trailler=tester, select race to reproduce using 
environent variable UPCT_RACE_ID=<num> and run  

 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
•  Applications 

Ø Tools 

“Efficient Data Race Detection for Distributed Memory Parallel Programs,” SC11 Paper, 
Chang-Seo Park, Koushi Sen, Paul Hargrove, and Costin Iancu 
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The eight NAS parallel benchmarks (NPBs) have been 
written in various languages including hybrid for three 

MG Multigrid Approximate the solution to a three-
dimensional discrete Poisson equation using 
the V-cycle multigrid method 

CG Conjugate 
Gradient 

Estimate smallest eigenvalue of sparse SPD 
matrix using the inverse iteration with the 
conjugate gradient method 

FT Fast Fourier 
Transform 

Solve a three-dimensional PDE using the 
fast Fourier transform (FFT) 

IS Integer Sort Sort small integers using the bucket sort 
algorithm 

EP Embarrassingly 
Parallel 

Generate independent Gaussian 
random variates using the 
Marsaglia polar method 

BT 
SP 
LU 

Block Tridiagonal 
Scalar Pentadiag 
Lower/Upper 
 

Solve a system of PDEs using 3 different 
algorithms 

MZ 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
Ø Applications 
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The NPBs in UPC are useful for 
studying various PGAS issues 

•  Using customized communication to avoid hot-spots 
–  UPC Collectives do not support certain useful communication patterns 

•  Blocking vs. Non-Blocking (Asynchronous) communication 
–  In FT and IS using non-blocking gave significantly worse performance 
–  In MG using non-blocking gave small improvement 

•  Benefits of message aggregation depends on the arch./interconnect 
–  In MG message aggregation is significantly better on Cray XT5 w/ 

SeaStar2 interconnect, but almost no difference is observable on Sun 
Constellation Cluster w/ InfiniBand 

•  UPC – Shared Memory Programming studied in FT and IS 
–  Less communication but reduced memory utilization 

•  Mapping BUPC language-level threads to Pthreads and/or Processes 
–  Mix of processes and pthreads often gives the best performance 

 
 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
Ø Applications 
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Using customized communication to 
avoid hot-spots 

•  UPC Collectives might not support certain types of communication 
patterns (for example, vector reduction). 

•  Customized communication is sometimes necessary! 
•  Collective communication naïve approach (FT example): 

  for (i=0; i<THREADS; i++) 
  upc_memget( … thread i … ); 

•  Collective communication avoiding hot-spots: 
  for (i=0; i<THREADS; i++){ 
         peer = (MYTHREAD + i) % THREADS; 
         upc_memget( … thread peer … ); 
    } 

•  Communication performance difference can exceed 50%  
(observed on Carver/NERSC – 2 quad-core Intel Nehalem cluster 
with Infiniband Interconnect) 
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Blocking vs. Non-Blocking 
(Asynchronous) communication 

•  Berkeley UPC allows usage of non-blocking communication (for 
efficient computation/communication overlap):  
–  upc_handle_t bupc_memget_async(void *dst, shared 
const void *src, size_t nbytes);  
§  starts communication 

–  void bupc_waitsync(upc_handle_t handle); 
§   wait for completion 

–  Asynchronous versions of memcpy and memput also exist 
•  Not always beneficial: 

–  Non-blocking communication can inject large number of messages 
into the network 

–  Lower levels of the network stack (firmware, switches) can employ 
internal flow-control and reduce the bandwidth 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
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Blocking vs. Non-Blocking 
(Asynchronous) communication (cont) 

•  FT – no communication/computation overlap possible, but non-
blocking communication can be used: 

 bupc_handle_t handles[THREADS]; 
  for(i = 0; i < THREADS; i++) { 
     peer = (MYTHREAD+i) % THREADS; 
    handles[i] = bupc_memget_async( … thread peer … ); 
  } 
  for(i=0; i < THREADS; i++) 
     bupc_waitsync(handles[i]); 

•  Using non-blocking communication, FT (also IS) experiences up to 
60% communication performance degradation. For MG we detected 
~2% performance increase. 

•  Slowdown is caused by a large number of messages injected into 
the network (there is no computation that could overlap 
communication and reduce the injection rate) 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
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In addition to asynchronous, one can study strided 
communication  and message aggregation 

•  Using strided communication is generally an improvement 
–  Again, BUPC has extensions for this purpose 

•  Message aggregation reduces the number of messages, but 
introduces the packing/unpacking overhead 

•  Message aggregation increases programming effort 
•  Example: 

 Fine-grained communication  
 Thread A     →      Thread B 
  for (i=0; i<n1; i++) 
   upc_memput( &k[i], 
    &u[i], 
    n2 * sizeof( double )); 
   

Message Aggregation 
Thread A: 
 buff  = pack(u); 
 upc_memput( &k[0],  
   &buff,  
   n1*n2*sizeof(double)); 
 upc_barrier; 
 

Thread B: 
      
upc_barrier; 
unpack(k); 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
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 MG message aggregation is significantly 
better on Cray SeaStar2 interconnect 
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•  MG message 
aggregation 
had almost no 
difference on 
Ranger 
InfiniBand 
interconnect  
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Class D NPBs have been run recently on two 
PF/s class machines at LRZ and LBL 

Property SuperMuc Hopper 
Peak Performance 3.19 PF/s (#4) 1.28 PF/s (#16) 

Number of Cores 147,456 153,216 

Clock Speed 2.7 (3.5 Turbo) GHz 2.1 GHz 

Interconnect Infiniband FDR10 Gemini in 3D torus 

Total Memory 288 TBytes 217 TBytes 

MG.D 1024 cores 
Machine and Complier 

Speed for 5 
runs 

No 
Flags 

Message 
Aggregation  

Message Agg 
+ Strided Com 

Hopper with Cray UPC Median Gops/s 519.52 533.41 (+ 3%) 544.86 (+ 5%) 

Hopper with Cray UPC Avg Gops/s 519.22 527.98 (+ 2%) 546.19 (+ 5%) 

Hopper with Cray UPC SD Gops/s 3.55 12.93 6.61 
SuperMUC with Berkeley UPC  Median Gops/s 879.8 1056.4 (+20%) 1026.5 (+ 17%) 

SuperMUC with Berkeley UPC  Avg Gops/s 891.70 1034.5 (+16%) 1041.4 (+ 17%) 

SuperMUC with Berkeley UPC  SD Gops/s 32.6 54.2 72.4 
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NPBs can used to study scalability as well as 
machine and complier effects 
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UPC – Hierarchical Shared Memory Programming 
reduces communication time 

•  UPC designed for pure distributed 
or pure shared memory systems 

•  UPC capable of exploiting shared 
memory (OMP-like) programming 
style within a node (thus avoiding  
some explicit communication) 

 

Master 
thread 

Parallel region –  
worker threads 

Master 
thread 

OMP – Shared 
Memory style 

MPI – Explicit 
Communication 

All-To-All  
Communication 

•   Drawback: reduced memory utilization (large fraction unusable) 
•  In the UPC hierarchical model, only the shared heap allocated by the 
  master thread is used 
•  In BUPC all threads have equally sized shared-heaps 
•  In any UPC upc_{all,global}_alloc() allocate across all threads 
•  Can result in large fraction of node memory potentially unusable 
•  Careful data placement capable of increasing memory utilization  
•  Berkeley is working on enabling uneven heap distribution in BUPC 

 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
Ø Applications 



131 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others 

Use of UPC shared memory reduced computation 
time by removing a transpose operation in FT 
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BUPC language-level threads can be 
mapped to Pthreads and/or Processes 

•  Pthreads – shared memory communication through shared 
address space 

•  Processes – shared memory communication through shared 
memory segments (POSIX, SysV or mmap(file)) called PSHM 

•  NPBs performance depends on Pthreads/Processes 
–  Pthreads share one network endpoint; PSHM has network 

endpoint per process 
–  Due to sharing of one network endpoint, pthreads experience 

messaging contention, resulting in throttled injection rate 
–  Processes (PSHM) can inject messages into the network faster 

(but large messages count may decrease effective bandwidth) 
–  PSHM avoids contention overhead when interacting with external 

libraries/drivers 
–  Contention and injection rate compete for dominance 
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•  Advanced synchronization  

concepts  
Ø Applications 



133 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others 

Mix  of processes and pthreads is often required 
for achieving the best performance  
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For FT the hybrid approach (1 process per socket and 
pthreads within a socket) is best and is a “reasonable” 
approach for the other NPBs 
 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
Ø Applications  



134 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others 

Some NAS Parallel Benchmarks have been written in 
multi-zone hybrid versions (currently with OpenMP) 

• Multi-zone versions of the NPSs 
LU,SP, and BT are available from: 

www.nas.nasa.gov/Resources/Software/software.html  

MPI/OpenMP Version 

Time step Sequential 

Inter-zones MPI Processes 

Exchange boundaries Call MPI 

Intra zones OpenMP 

Figure adapted from Gabriele Jost, et al., ParCFD2009 Tutorial 
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•  BT-MZ: (Block-tridiagonal Solver) 
–  Size of the zones varies widely: 

•  large/small about 20 
•  requires multi-level parallelism to achieve a good load-balance 

•  LU-MZ: (Lower-Upper Symmetric Gauss Seidel Solver) 
–  Size of the zones identical: 

•  no load-balancing required 
•  limited parallelism on outer level 

•  SP-MZ: (Scalar-Pentadiagonal Solver) 
–  Size of zones identical 

•  no load-balancing required 

Hybrid coding can yield improved 
performance for some benchmarks 

Load-­‐balanced	
  on	
  MPI	
  
level:	
  Pure	
  MPI	
  should	
  

perform	
  best	
  

Pure	
  MPI:	
  Load-­‐
balancing	
  problems!	
  
Good	
  candidate	
  for	
  

MPI+OpenMP	
  

Limited	
  MPI	
  
Parallelism:	
  

à	
  MPI+OpenMP	
  
increases	
  
Parallelism	
  

Adapted from Gabriele Jost, et al., ParCFD2009 Tutorial 
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PGAS languages can also be 
combined with MPI for hybrid 

•  MPI is designed to allow coexistence with other parallel 
programming paradigms and uses the same SPMD model: 

  è MPI and UPC or Coarrays can exist together in a program 
 
•  When mixing communications models, each will have its own 

progress mechanism and associated rules/assumptions 

•  Deadlocks can happen if some processes are executing blocking 
MPI operations while others are in “PGAS communication mode” 
and waiting for images (e.g., sync all) 

      è "MPI phase" should end with MPI barrier, and a ”CAF phase" should 
end with a CAF barrier to avoid communication deadlocks 

 

09/16/10, Author: 
Robert Preissl 
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There are differences between  
Rice and Cray CAF 

 
•  CAF is becoming part of Fortran standard 

•  MPI indexes its processors from 0 to “number-of-processes – 1” 

–  Cray CAF indexes images from 1 to “num_images()”.  

–  Rice CAF indexes from 0 to “num_images() - 1”) 

•  Mixing OpenMP and CAF only works with Cray CAF 
      - Rice CAF interoperability still under development 
      - OpenMP threads can execute CAF PUT/GET operations 

  

09/16/10, Author: 
Robert Preissl 
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We give one example of hybrid  
MPI and CAF interoperability 

program MPI_and_CAF 
 

    integer ::   ntasks,ierr,rank,size 
    integer,pointer,dimension(:) :: array 
 

    call MPI_Init(ierr) 
    call MPI_COMM_SIZE(MPI_COMM_WORLD,ntasks,ierr) 
    call MPI_COMM_RANK(MPI_COMM_WORLD,rank,ierr) 
 

    size = 1000    
    allocate(array(1:size)) 
    array = 1 
 

    call mpi_routine1(array) 
 

    call MPI_BARRIER(MPI_COMM_WORLD,ierr) 
 

    call caf_routine(rank,size,array) 
 

    call MPI_BARRIER(MPI_COMM_WORLD,ierr) 
 

    call mpi_routine2(array) 
 

    deallocate(array) 
    call MPI_FINALIZE(ierr) 
 

end program MPI_and_CAF 
 

subroutine caf_routine(mpi_rank,size,mpi_array) 
 

    integer :: mpi_rank,size,world_rank,world_size 
    integer,dimension(size ) :: mpi_array 
    integer,allocatable :: co_array(:)[:] 
 

    SYNC ALL ! Full barrier; wait for all images 
 

    world_rank = THIS_IMAGE() ! equal to mpi_rank 
    world_size = NUM_IMAGES() 
 
    … ! some computation on mpi_array and co_array 
 

    SYNC ALL  
 

end subroutine caf_routine 
 

main.F90 

caf.F90 

# building for Hopper/Franklin @ NERSC: 
module swap PrgEnv-pgi PrgEnv-cray 
ftn –static –O3 –h caf caf.F90 
ftn –static –O3 mpi.F90 
ftn –static –O3 main.F90 
ftn –static –o exec caf.o mpi.o main.o 

subroutine mpi_routine1… 
subroutine mpi_routine2 … 
 
 

mpi.F90 
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Hybrid MPI and UPC is still under 
development on Cray platforms 

 
•  Exercise is to download and compare three hybrid MPI-UPC 

versions of dot product 
•  Works on certain clusters but not yet on XT5 test platform 

•  The three coding examples vary the level of nesting and number of 
instances of both models 
•  Flat model: provides a non-nested common MPI and UPC execution 

where each process is a part of both the MPI and the UPC execution 
•  Nested-funneled model: provides an operational mode where only the 

master process per group gets an MPI rank and can make MPI calls 
•  Nested-multiple model: provides a mode where every UPC process 

gets its own MPI rank and can make MPI calls independently. 

Dot product coding from “Hybrid Parallel Programming with MPI and Unified Parallel C”  
by James Dinan, Pavan Balaji, Ewing Lusk, P. Sadayappan, and Rajeev Thakur 
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Exercise: Download, run, and time a 
hybrid MPI/CAF code example 

•  Code is the communication intensive routine of a plasma simulation 

•  The simulation follows the trajectories of charged particles in a torus 

•  Due to the parallel domain decomposition of the torus, a huge 
number of particles have to be shifted at every iteration step from one 
domain to another using MPI 

• Typically, 10% of each process’ particles are sent to neighbor domain; 1% 
goes to “rank+2” and only a small fraction further.  
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Compare differences in reduced code MPI and MPI-
CAF benchmarks (coding/performance) 

•  MPI benchmark simulates the communication behavior of the code 

•  Iterates through an array of numbers in each domain with numbers 
that are a multiple of x (e.g. 10) being sent to “rank+1” and numbers 
which are a multiple of y (e.g. 100) being sent to “rank+2” 

•  The MPI-CAF benchmark follows exactly the algorithm but has been 
improved exploiting one-sided communication and image control 
techniques provided by CAF 
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The MPI version of the shifter benchmark 

program MPI_CAF_ShifterBenchmark 
    …… 

  call mpi_benchmark(..) 
 

  call MPI_BARRIER(MPI_COMM_WORLD,ierr) 
 

  call caf_benchmark(..) 
 

end program MPI_CAF_ShifterBenchmark 
 

subroutine mpi_benchmark() 
 

 100: outer_loop = outer_loop  + 1 
  do m=m0,array_size     ! use modulo operator on x and y for outer_loop==1 
    if( is_shifted(array(m)) ) then  ! and just on y for outer_loop==2 
      send_counter = send_counter + 1 
      send_vector(send_counter) = m ! store position of sends 
    endif 
 

    MPI_Allreduce(send_counter,result) ! Stop when no numbers are sent 
    if( result == 0 ) exit                             !  by all processors 
 

    do i=1, send_counter  ! pack the send array 
      send_array(i) = array( send_vector(i) ) 
    enddo 
 

    fill_remaining_holes(array) 
 

    MPI_Send_Recv(send_counter,recv_counter) ! send & recv new numbers 
    MPI_Send_Recv(send_array, recv_array,..) 
 

    do i=1, recv_counter  ! add the received numbers to local array 
      array(a+i)=recv_array(i) 
    enddo 
    array_size = array_size - send_counter + recv_counter  
    m0 = .. ! adapt array size, and the array starting position of next iteration 
  enddo 
 

end subroutine mpi_benchmark 
 

main.F90 

caf.F90 

In order to precisely compare the performance of the MPI code vs. the CAF 
implementation, the MPI and CAF algorithm have to be in the same executable. 

caf_benchmark programming hints: 
 
-  use a multidimensional send-buffer (i.e., for each 
  possible destination fill a send-vector) 
 
-  this send-vector has a fixed length := s 

-  if length of send-buffer(dest) == s then fire up a  
  message to image “dest” and fill its receive queue 
 
-  for filling the 1D receive queue on a remote image 
  use image control statements to ensure 
  correctness (e.g. locks, critical sections, etc.) 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
•  Advanced synchronization  

concepts  
Ø Applications  



143 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others 

Appendix 

05/19/09, Author: 
Rolf Rabenseifner 
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https://fs.hlrs.de/projects/rabenseifner/publ/SC2012-PGAS.html  

o  Additional material on exercises 
o  Abstract 
o  Presenters 
o  Literature 
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README – UPC 
on Cray XE…: UPC / PGI 

Initialization:  module load bupc 

Interactive PBS shell: 
In the SC tutorial 
  qsub -I -q special -lmppwidth=24,mppnppn=24, \ 
                      walltime=00:30:00 -V 

Again to the working directory: 
  cd $PBS_O_WORKDIR 

Compilation: 
  upcc -O -T=4 -o myprog myprog.c 

Parallel Execution: 
  upcrun -n 1 -cpus-per-node 24 ./myprog 
  upcrun -n 2 -cpus-per-node 24 ./myprog 
  upcrun -n 4 -cpus-per-node 24 ./myprog 

Exercise 2 

Exercise 3/4 

Exercise 1 

05/19/09, Author: 
Rolf Rabenseifner 
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README – UPC 
on Cray XE…: Cray UPC 

Initialization:  module switch PrgEnv-pgi PrgEnv-cray 

Interactive PBS shell: 
In the SC tutorial 
  qsub -I -q special -lmppwidth=24,mppnppn=24, \ 
                      walltime=00:30:00 -V 

Again to the working directory: 
  cd $PBS_O_WORKDIR 

Compilation: 
  cc -h upc -o myprog myprog.c 

Parallel Execution: 
  aprun -n 1 -N 1 ./myprog 
  aprun -n 2 -N 2 ./myprog 
  aprun -n 4 -N 4 ./myprog 

05/19/09, Author: 
Rolf Rabenseifner 
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README – UPC 
on Cray XE…: Cray Fortran 

Initialization:  module switch PrgEnv-pgi PrgEnv-cray 

Interactive PBS shell: 
In the SC tutorial 
  qsub -I -q special -lmppwidth=24,mppnppn=24, \ 
                      walltime=00:30:00 -V 

Again to the working directory: 
  cd $PBS_O_WORKDIR 

Compilation: 
  ftn –e m –h caf -o myprog myprog.f90 

Parallel Execution: 
  aprun -n 1 -N 1 ./myprog 
  aprun -n 2 -N 2 ./myprog 
  aprun -n 4 -N 4 ./myprog 

05/19/09, Author: 
Rolf Rabenseifner 
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Exercise 2 

Exercise 3/4 

Exercise 1 
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hello_upc_1.c  and   
hello_caf_1.f90 

#include <upc.h> 
#include <stdio.h> 
int main(int argc, char** argv) 
{ 
  if (MYTHREAD == 0) printf("hello world\n");  
  printf("I am thread number %d of %d threads\n",  
                       MYTHREAD,   THREADS); 
  return 0; 
} 

program hello 
implicit none  
integer :: myrank, numprocs 
myrank   = THIS_IMAGE()  
numprocs = NUM_IMAGES() 
if (myrank == 1) print *, 'hello world' 
write (*,*) 'I am image number',myrank, & 
          & ' of ',numprocs,' images' 
end program hello Exercise 1 

05/19/09, Author: 
Rolf Rabenseifner 
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Dynamic entities: 
triangular.f90 

•  Matrix object declaration and 
initialization code 

•  Solution programs 
available as 

–  ../triangular_matrix/
solutions/triangular.f90 
(Fortran) 

–  ../triangular_matrix/
solutions/triangular.upc   
(UPC) 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
•  Advanced synchronization   
•  Applications 
Ø Appendix 
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● Abstract  ● Literature 

type(tri_matrix), allocatable :: a(:)[:] 
:  
me = this_image() ; nproc = num_images() 
rows_per_proc = n / nproc 
if (mod(n, nproc) > 0) & 
       rows_per_proc = rows_per_proc + 1 
allocate(a(rows_per_proc)[*]) 
! initialize matrix A(i, j) = i + j 
i_local = 1 
n_elem = 0 
do i = me, n, nproc 
  allocate(a(i_local)%row(n - i + 1)) 
  do j = 1, n - i + 1 
     a(i_local)%row(j) = real(i) + real(j) 
  end do 
  n_elem = n_elem + n - i + 1 
  i_local = i_local + 1 
end do 
  
 
    

Exercise 2 
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Manual reduction: 
mod_reduction_simple.f90 

•  Singleton coarray g as 
module variable  

•  Prefix reduction 
–  pipelined execution („John Reid‘s ladder“) 
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Ø Appendix 

●  Exercises  ● Presenters 
● Abstract  ● Literature 

real(dk) function  & 
         caf_reduce(x, ufun) 
  real(dk), intent(in) :: x 
  procedure(rf) :: ufun 
 
  if (this_image() == 1) then 
     g = x 
     sync images(*) 
  else 
     sync images(1) 
     critical 
        g[1] = ufun(x,g[1]) 
     end critical 
  end if 
  sync all 
  caf_reduce = g[1] 
  sync all ! protect against  
     ! subsequent write of g 
  end function caf_reduce 

Exercise 3 

real(dk) function & 
         caf_prefix_reduce(x, ufun) 
    real(dk), intent(in) :: x 
    procedure(rf) :: ufun 
    integer :: me 
    me = this_image() 
    if (me == 1) then 
       g = x 
       caf_prefix_reduce = x 
    else 
       sync images ((/me,me-1/)) 
       g = ufun(x,g[me-1]) 
       caf_prefix_reduce = g 
    end if 
    if (me < num_images()) & 
       sync images ((/me,me+1/)) 
    sync all ! protect against 
       ! subsequent write of g on 1  
end function caf_prefix_reduce 
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Manual reduction (2) 

•  Programs from previous 
slide 

–  are not the most efficient 
solutions 

–  alternative: „butterfly 
pattern“ 

•  Power-of-two version 
–  illustrative code based on 

tutorial material by Bob Numrich 

•  Files for study: 
–  reduction_heat/solutions/mod_reduction*  

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
•  Advanced synchronization   
•  Applications 
Ø Appendix 

●  Exercises  ● Presenters 
● Abstract  ● Literature 

real(dk) function caf_reduce(x, ufun) 
  real(dk), intent(in) :: x 
  procedure(rf) :: ufun 
  real(kind=8) :: work 
  integer :: n,bit,i,mypal,dim,me 
  : ! dim is log2(num_images()) 
  : ! dim == 0 trivial 
  g = x 
  bit = 1; me = this_image(g,1) - 1 
  do i=1, dim 
     mypal = xor(me,bit) 
     bit = shiftl(bit,1) 
     sync all 
     work = g[mypal+1] 
     sync all 
     g = ufun(g,work) 
  end do 
  caf_reduce = g 
  sync all ! against subsequent write on g 
end function 

i = 
 
1 
 
2 
 
3 
 

real(dk) :: g[*] 
! global variable 
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Appendix:  Abstract 

PGAS (Partitioned Global Address Space) languages offer both an 
alternative to traditional parallelization approaches (MPI and OpenMP), and 
the possibility of being combined with MPI for a multicore Applications 
model.  In this tutorial we cover PGAS concepts and two commonly used 
PGAS languages, Coarray Fortran (CAF, as specified in the Fortran 
standard) and the extension to the C standard, Unified Parallel C (UPC).  
Exercises exercises to illustrate important concepts are interspersed with 
the lectures. Attendees will be paired in groups of two to accommodate 
attendees without laptops. Basic PGAS features, syntax for data 
distribution, intrinsic functions and synchronization primitives are discussed.  
Additional topics include parallel programming patterns, future extensions 
of both CAF and UPC, and hybrid programming. In the hybrid programming 
section we show how to combine PGAS languages with MPI, and contrast 
this approach to combining OpenMP with MPI. Real applications using 
hybrid models are given.  

05//10, Author: 
Alice Koniges 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
•  Advanced synchronization   
•  Applications 
Ø Appendix 

●  Exercises  ● Presenters 
● Abstract  ● Literature 
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Presenters 

•  Dr. Alice Koniges  is a Physicist and Computer Scientist at the National Energy Research 
Scientific Computing Center (NERSC) at the Berkeley Lab. Previous to working at the 
Berkeley Lab, she held various positions at the Lawrence Livermore National Laboratory, 
including management of the Lab’s institutional computing. She recently led the effort to 
develop a new code that is used predict the impacts of target shrapnel and debris on the 
operation of the National Ignition Facility (NIF), the world’s most powerful laser. Her 
current research interests include parallel computing and benchmarking, arbitrary 
Lagrange Eulerian methods for time-dependent PDE’s, and applications in plasma physics 
and material science. She was the first woman to receive a PhD in Applied and 
Computational Mathematics at Princeton University and also has MSE and MA degrees 
from Princeton and a BA in Applied Mechanics from the University of California, San 
Diego. She is editor and lead author of the book “Industrial Strength Parallel 
Computing,” (Morgan Kaufmann Publishers 2000) and has published more than 80 
refereed technical papers. 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
•  Advanced synchronization   
•  Applications 
Ø Appendix 

●  Exercises  ● Presenters 
● Abstract  ● Literature 
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Presenters 

•  Dr. Katherine Yelick  is the Director of the National Energy Research Scientific 
Computing Center (NERSC) at Lawrence Berkeley National Laboratory and a Professor of 
Electrical Engineering and Computer Sciences at the University of California at Berkeley. 
She is the author or co-author of two books and more than 100 refereed technical papers 
on parallel languages, compilers, algorithms, libraries, architecture, and storage. She co-
invented the UPC and Titanium languages and demonstrated their applicability across 
architectures through the use of novel runtime and compilation methods. She also co-
developed techniques for self-tuning numerical libraries, including the first self-tuned 
library for sparse matrix kernels which automatically adapt the code to properties of the 
matrix structure and machine. Her work includes performance analysis and modeling as 
well as optimization techniques for memory hierarchies, multicore processors, 
communication libraries, and processor accelerators.  She has worked with 
interdisciplinary teams on application scaling, and her own applications work includes 
parallelization of a model for blood flow in the heart. She earned her Ph.D. in Electrical 
Engineering and Computer Science from MIT and has been a professor of Electrical 
Engineering and Computer Sciences at UC Berkeley since 1991 with a joint research 
appointment at Berkeley Lab since 1996. She has received multiple research and teaching 
awards and is a member of the California Council on Science and Technology and a 
member of the National Academies committee on Sustaining Growth in Computing 
Performance. 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
•  Advanced synchronization   
•  Applications 
Ø Appendix 

●  Exercises  ● Presenters 
● Abstract  ● Literature 



154 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others 

Presenters 

•  Dr. Rolf Rabenseifner  studied mathematics and physics at the University of Stuttgart. 
Since 1984, he has worked at the High-Performance Computing-Center Stuttgart (HLRS). 
He led the projects DFN-RPC, a remote procedure call tool, and MPI-GLUE, the first 
metacomputing MPI combining different vendor's MPIs without losses to full MPI 
functionality. In his dissertation, he developed a controlled logical clock as global time for 
trace-based profiling of parallel and distributed applications. Since 1996, he has been a 
member of the MPI-2 Forum and since December 2007 he is in the steering committee of 
the MPI-3 Forum. From January to April 1999, he was an invited researcher at the Center 
for High-Performance Computing at Dresden University of Technology. Currently, he is 
head of Parallel Computing - Training and Application Services at HLRS. He is involved in 
MPI profiling and benchmarking e.g., in the HPC Challenge Benchmark Suite. In recent 
projects, he studied parallel I/O, parallel programming models for clusters of SMP nodes, 
and optimization of MPI collective routines. In workshops and summer schools, he teaches 
parallel programming models in many universities and labs in Germany.  

–  Homepage: http://www.hlrs.de/people/rabenseifner/ 
–  List of publications: https://fs.hlrs.de//projects/rabenseifner/publ/ 
–  International teaching: https://fs.hlrs.de//projects/rabenseifner/publ/#tutorials 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
•  Advanced synchronization   
•  Applications 
Ø Appendix 

●  Exercises  ● Presenters 
● Abstract  ● Literature 
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Presenters 

•  Dr. Reinhold Bader  studied physics and mathematics at the Ludwigs-Maximilians 
University in Munich, completing his studies with a PhD in theoretical solid state physics in 
1998. Since the beginning of 1999, he has worked at Leibniz Supercomputing Centre 
(LRZ) as a member of the scientific staff, being involved in HPC user support, 
procurements of new systems, benchmarking of prototypes in the context of the PRACE 
project, courses for parallel programming, and configuration management for the HPC 
systems deployed at LRZ. As a member of the German delegation to WG5, the 
international Fortran Standards Committee, he also takes part in the discussions on further 
development of the Fortran language. He has published a number of contributions to 
ACMs Fortran Forum and is responsible for development and maintenance of the Fortran 
interface to the GNU Scientific Library. 
 Sample of national teaching: 

–  LRZ Munich / RRZE Erlangen 2001-2011 (5 days) - G. Hager, R. Bader et al: Parallel 
Programming and Optimization on High Performance Systems 

–  LRZ Munich (2009-2011) (5 days) - R. Bader: Advanced Fortran topics - object-
oriented programming, design patterns,  coarrays and C interoperability 

–  LRZ Munich (2010) (1 day) - A. Block and R. Bader: PGAS programming with coarray 
Fortran and UPC 

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
•  Advanced synchronization   
•  Applications 
Ø Appendix 

●  Exercises  ● Presenters 
● Abstract  ● Literature 
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Presenters 

•  Dr. David Eder  is a computational physicist and group leader at the Lawrence Livermore 
National Laboratory in California. He has extensive experience with application codes for 
the study of multiphysics problems. His latest endeavors include ALE (Arbitrary Lagrange 
Eulerian) on unstructured and block-structured grids for simulations that span many orders 
of magnitude. He was awarded a research prize in 2000 for use of advanced codes to 
design the National Ignition Facility 192 beam laser currently under construction. He has a 
PhD in Astrophysics from Princeton University and a BS in Mathematics and Physics from 
the Univ. of Colorado. He has published approximately 80 research papers.  

•  Basic PGAS concepts 
•  UPC and CAF basic syntax  
•  Advanced synchronization   
•  Applications 
Ø Appendix 

●  Exercises  ● Presenters 
● Abstract  ● Literature 
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Literature 

•  UPC references 
–  UPC Language specification, by the UPC Consortium: 

http://upc.gwu.edu/docs/upc_specs_1.2.pdf  
–  UPC Manual, by Sébastien Chauvin, Proshanta Saha, François Cantonnet, 

Smita Annareddy, Tarek El-Ghazawi, May 2005 
http://upc.gwu.edu/downloads/Manual-1.2.pdf  

–  UPC Distributed Memory Programming, by Tarek El-Ghazawi, Bill Carlson, 
Thomas Sterling, and Katherine Yelick, Wiley & Sons, June 2005 

•  Coarray references 
–  Coarrays in the next Fortran Standard, by John Reid 

WG5 paper N1824, April 21, 2010,            
ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1824.pdf 

–  Fortran 2008 draft international standard 
–  Coarray compendium, by Andy Vaught, http://www.g95.org/compendium.pdf  


